Design and Analysis of a High-Static-Low-Dynamic Stiffness Isolator Using the Cam-Roller-Spring Mechanism

2020 ◽  
Vol 142 (2) ◽  
Author(s):  
Yuhui Yao ◽  
Xiaojian Wang ◽  
Hongguang Li

Abstract This paper presents a new design of a high-static-low-dynamic stiffness (HSLDS) isolator with an adjustable cam profile. The interaction force between the cam and roller provides the negative stiffness force and the linear spring provides the positive stiffness force in the HSLDS isolator. Unlike previous studies, the cam profile in this paper can be individually designed to meet different working conditions. Firstly, the harmonic balance method is used to acquire the dynamic response of the HSLDS isolator. Then, the effects of the damping ratio, stiffness ratio, and external force amplitude on the frequency response amplitude and force transmissibility are discussed. Finally, the frequency responses of four designed nonlinear HSLDS isolators and a linear isolator are acquired by the numerical method. The results show that the nonlinear isolator begins to achieve vibration isolation at 0.11 Hz and the linear one is 8.9 Hz. The proposed HSLDS isolator realizes lower vibration isolation frequency than the linear isolator.

Author(s):  
Zhirong Yang ◽  
Yan Wang ◽  
Ziming Huang ◽  
Zhushi Rao

The high-static-low-dynamic stiffness vibration isolator has great advantages in vibration isolation because it can decrease the natural frequency of the system while keeping the load capability, but it is usually difficult to implement because of its complex structures and installation space constraints. A high-static-low-dynamic stiffness vibration isolator composed of a buckling circular plate and a traditional linear spring is proposed in this paper. The buckling circular plate works as the negative stiffness corrector paralleled with the linear spring, which can be integrated into the sleeve. If the load is chosen properly, the static equilibrium point will be at the initial quasi-zero stiffness point. However, any changes of the load will lead the equilibrium point deviating from the initial equilibrium point. The nonlinear mathematical model of high-static-low-dynamic stiffness vibration isolator considering load imperfection is developed and its force transmissibility is analyzed with the harmonic balance method and homotopy perturbation method. The influence rule of the system parameters on it is analyzed and the corresponding results show that the force transmissibility will exhibit complicated characteristics, depending on the load imperfection, damper, and excitation force.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Ze-Qi Lu ◽  
Dong Shao ◽  
Hu Ding ◽  
Li-Qun Chen

The manuscript concerns the power flow characterization in a two-stage nonlinear vibration isolator comprising three springs, which are configured so that each stage of the system has a high-static-low-dynamic stiffness. To demonstrate the distinction of evaluation for vibration isolation using power flow, force transmissibility is used for comparison. The dynamic behavior of the isolator subject to harmonic excitation, however, is of interest here. The harmonic balance method (HBM) could be used to analyze the frequency response curve (FRC) of the strong nonlinear vibration system. A suggested stability analysis to distinguish the stable and the unstable HBM solutions is described. Increasing both upper and lower nonlinear stiffness could bend the first resonant peak to the left. The isolation range in the power and the force transmissibility plot could be extended to the lower frequencies when the nonlinear stiffness is increased, but the rate of roll-off for the power transmissibility is twice the rate for the force transmissibility at each horizontal stiffness setting. An explanation for this phenomenon is given in the paper.


Author(s):  
Pascal Reuss ◽  
Lothar Gaul

The use of absorbers to reduce vibrations of machines is common in industry and can be found in various applications. In most cases passive absorbers are used to cancel one particular eigenfrequency. The disadvantage of this solution is that due to the introduction of an additional degree-of-freedom two resonance peaks occur next to the absorbed eigenfrequency. Given the case that the machine operates in a wider frequency band these two eigenfrequencies could be excited and feature similarly high amplitudes. To address this concern, in the present case an adaptive absorber is used, which is able to adjust its eigenfrequency to the actually excited frequency. Therefore, the anti-resonance can be shifted such that a full cancellation of the resonance is possible. The absorber consists of a mass and two springs. One spring is fixed to the mass permanently and the second can be coupled to the system by an adaptive joint connection. The normal force in the frictional contact serves as control variable to achieve adaptivity of the dynamic eigenfrequency of the absorber. Two control concepts are presented. Both concepts include isolated curves characterizing the nonlinear relation between the dynamic stiffness and the related normal force based on simulations using the Harmonic Balance Method. Due to the isolation of the nonlinearity, linear control concepts like LQR can be applied, which is done in the present case. Furthermore, a direct control of the eigenfrequency is done. The adaptive absorber is applied to a simplified machine tool carriage.


2020 ◽  
Vol 10 (7) ◽  
pp. 2273 ◽  
Author(s):  
Shuai Wang ◽  
Wenpen Xin ◽  
Yinghao Ning ◽  
Bing Li ◽  
Ying Hu

This paper proposes a new kind of quasi-zero-stiffness (QZS) isolation system that has the property of low-dynamic but high-static stiffness. The negative stiffness was produced using two magnetic rings, the magnetization of which is axial. First, the force–displacement characteristic of the two coupled magnetic rings was developed and the relationship between the parameters of the magnetic rings and the stiffness of the system was investigated. Then, the dynamic response of the QZS was analyzed. The force transmissibility of the system was calculated and the effects of the damping ratio and excitation amplitude on the isolation performance were investigated. The prototype of the QZS system was developed to verify the isolation effects of the system based on a comparison with a linear vibration isolation platform. Lastly, the improvement of the QZS system was conducted based on changing the heights of the ring magnets and designing a proper non-linear spring. The analysis shows the QZS system after improvement shows better isolation effects than that of the non-improved system.


2013 ◽  
Vol 423-426 ◽  
pp. 1603-1607
Author(s):  
Yao Guo Xie ◽  
Ping He ◽  
Xian Qiang Qu ◽  
Hong Bin Cui

Through the analysis and comparison of the results of static and dynamic performance testing of a series of laminated steel pieces isolators used in the vibration isolation of warships, in the number and thickness of laminated steel pieces of the same circumstances, laminated steel arc and preload of test samples had a certain impact on the values ​​of static stiffness, dynamic stiffness, damping ratio as well as dynamic and static stiffness ratio.


2006 ◽  
Vol 74 (2) ◽  
pp. 249-255 ◽  
Author(s):  
Q. L. Ma ◽  
A. Kahraman ◽  
J. Perret-Liaudet ◽  
E. Rigaud

In this study, the dynamic behavior of an elastic sphere-plane contact interface is studied analytically and experimentally. The analytical model includes both a continuous nonlinearity associated with the Hertzian contact and a clearance-type nonlinearity due to contact loss. The dimensionless governing equation is solved analytically by using multi-term harmonic balance method in conjunction with discrete Fourier transforms. The accuracy of the dynamic model and solution methods is demonstrated through comparisons with experimental data and numerical solutions for both harmonic amplitudes of the acceleration response and the phase difference between the response and the force excitation. A single-term harmonic balance approximation is used to derive a criterion for contact loss to occur. The influence of harmonic external excitation f(τ) and damping ratio ζ on the steady state response is also demonstrated.


2017 ◽  
Vol 24 (16) ◽  
pp. 3608-3616 ◽  
Author(s):  
Li Yingli ◽  
Xu Daolin

In view of the excellent performance of a single quasi-zero-stiffness (QZS) device in vibration attenuation, this paper presents a study on a vibration isolation floating raft system constructed with a double-layer QZS mechanism. A QZS device is a typical nonlinear isolator, hence the floating raft system is a coupled highly nonlinear isolation system. To understand the behaviors and its performance in vibration attenuation, an analytical approach is developed to describe the characteristics including the mathematical relationship between amplitude–frequency, force transmissibility, and the effects of the mass ratio and damping ratios on attenuation performance. The outcomes show that the two-degree-of-freedom QZS–QZS system is superior for vibration isolation when compared to the traditional linear system and the two other types of QZS systems. The effective vibration isolation frequency region of the QZS–QZS system is expanded to the low-frequency region by 72%. The QZS system is sensitive to the damping ratio, which decreases the resonance peak significantly. The mass ratio is a crucial design parameter in low-frequency vibration isolation design.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Hao Cao ◽  
Yaopeng Chang ◽  
Jiaxi Zhou ◽  
Xuhui Zhao ◽  
Ling Lu ◽  
...  

The vibrations generated by a three-phase power transformer reduce the comfort of residents and the service life of surrounding equipment. To resolve this tough issue, a quasi-zero-stiffness (QZS) isolator for the transformer is proposed. This paper is devoted to developing a QZS isolator in a simple way for engineering practices. The vertical springs are used to support the heavy weight of the transformer, while the oblique springs are employed to fulfill negative stiffness to neutralize the positive stiffness of the vertical spring. Hence, a combination of the vertical and oblique spring can yield high static but low dynamic stiffness, and the vibration isolation efficiency can be improved substantially. The dynamic analysis for the QZS vibration isolation system is conducted by the harmonic balance method, and the vibration isolation performance is estimated. Finally, the prototype of the QZS isolator is manufactured, and then the vibration isolation performance is tested comparing with the linear isolator under real power loading conditions. The experimental results show that the QZS isolator prominently outperforms the existing linear isolator. This is the first time to devise a QZS isolator for three-phase power transformers with heavy payloads in engineering practices.


2021 ◽  
Vol 2101 (1) ◽  
pp. 012028
Author(s):  
Zhirong Yang ◽  
Lintao Li ◽  
Jiacheng Yao ◽  
Qingkai Wang

Abstract A torsion vibration isolator composed of oblique springs with high-static-low-dynamic stiffness (HSLDS) is proposed to attenuate the transmission of torsion vibration along the shipping shaft in this paper. It is good at in low frequency vibration isolation as it can significantly reduce the resonance frequency of the system with the same load capability. Firstly, the model of HSLDS torsion vibration isolator is introduced in this paper. Secondly, the non-dimensional torsion stiffness is formulated using mechanics theory, and the HSLDS characteristic of designed torsion vibration isolator is verified. Finally, the torque transmissibility is analyzed using the Increment Harmonic Balance (IHB) method, and the effects of the system parameters on it are analyzed. The results show that the resonant frequency increases accordingly as the stiffness ratio and the excitation torque are increased. However, the peak value of the torsion transmissibility is decreased as the damper ratio increasing.


2021 ◽  
Vol 42 (11) ◽  
pp. 1555-1570
Author(s):  
Chenxu Qiang ◽  
Yuxin Hao ◽  
Wei Zhang ◽  
Jinqiang Li ◽  
Shaowu Yang ◽  
...  

AbstractThe concept of local resonance phononic crystals proposed in recent years provides a new chance for theoretical and technical breakthroughs in the structural vibration reduction. In this paper, a novel sandwich-like plate model with local resonator to acquire specific low-frequency bandgaps is proposed. The core layer of the present local resonator is composed by the simply supported overhanging beam, linear spring and mass block, and well connected with the upper and lower surface panels. The simply supported overhanging beam is free at right end, and an additional linear spring is added at the left end. The wave equation is established based on the Hamilton principle, and the bending wave bandgap is further obtained. The theoretical results are verified by the COMSOL finite element software. The bandgaps and vibration characteristics of the local resonance sandwich-like plate are studied in detail. The factors which could have effects on the bandgap characteristics, such as the structural damping, mass of vibrator, position of vibrator, bending stiffness of the beam, and the boundary conditions of the sandwich-like plates, are analyzed. The result shows that the stopband is determined by the natural frequency of the resonator, the mass ratio of the resonator, and the surface panel. It shows that the width of bandgap is greatly affected by the damping ratio of the resonator. Finally, it can also be found that the boundary conditions can affect the isolation efficiency.


Sign in / Sign up

Export Citation Format

Share Document