Analysis and Assessment of Tower Solar Collector Driven Trigeneration System

2020 ◽  
Vol 142 (5) ◽  
Author(s):  
Abdul Khaliq ◽  
Mathkar A. Alharthi ◽  
Saeed Alqaed ◽  
Esmail M. A. Mokheimer ◽  
Rajesh Kumar

Abstract This paper describes the development and performance assessment of a tower solar collector driven integrated system operating in trigeneration mode to generate electricity, heating, and cooling, in a carbon-free manner. The proposed system applies a heliostat-based central receiver unit as a base of solar energy input to drive the steam Rankine cycle which is combined with the process heater and the lithium bromide-water operated absorption chiller. An analysis is performed to monitor the behavior of energy and exergy efficiency at various operating conditions of the proposed trigeneration system. The computed results are authenticated with the reported literature. A comparison is made between the present findings and reported results in the form of exergy efficiency, total exergy destroyed, and energy efficiency. Consideration of process heat and cold along with electricity provides a promising increase in energy efficiency from 15.8% to 64.1% while the exergy efficiency is enhanced from 16.9% to 24.4%. Variation in direct normal irradiations from 600 W/m2 to 1000 W/m2 results in the significant rise of energetic and exergetic outcomes of the proposed trigeneration system. Out of 100% solar exergy supplied to the proposed trigeneration, 24% is generated as the exergetic output, 1.6% is lost to ambient, and the remaining 74.4% is the exergy destroyed in the system components.

2011 ◽  
Vol 467-469 ◽  
pp. 1550-1555
Author(s):  
Ming Yu Chen ◽  
Shao Peng Wu ◽  
Ji Zhe Zhang ◽  
Pan Pan

Asphalt pavement can be used in solar energy harnessing, by means of solar collector developed in heating and cooling the adjacent buildings, as well as keeping the pavement ice-free directly. In the light of the actual situation of preparation and formation of a larger asphalt concrete slab, an experimental method and evaluation system for asphalt pavement snow melting was designed and constructed. The feasibility of snow melting using asphalt solar collector was verified, and the effect of the heat exchanger on the temperature distribution was quantitatively tested The results indicated that although the entire snowmelt time is longer than expected, it is acceptable for us to use asphalt solar collector for snow melting, especially, low temperature water about 25°C is used for snow melting. Besides, the melting process of ice and snow generally includes three phases: the starting period, the linear period and the accelerated period. The snow melting system is controlled to maintain the asphalt pavement surface temperature of 3 to 5°C which is sufficient to prevent freezing of the road.


2019 ◽  
Vol 141 (6) ◽  
Author(s):  
Pantelis N. Botsaris ◽  
Alexandros G. Pechtelidis ◽  
Konstantinos A. Lymperopoulos

The present work is focused on the development of a simulation model for an existing cogeneration power plant, which utilizes a solar thermal field with parabolic trough solar collectors coupled to an Organic Rankine Cycle engine. The power plant is modeled in the trnsys v.17 software package and its performance has been validated with real operating conditions. The simulated system (concentrated solar power (CSP) field and ORC engine) is the main part of a hybrid power plant located near “Ziloti” village of the Municipality of Xanthi, in northeastern Greece. The construction of the hybrid power plant was funded by the Strategic Co-Funded Project of the European Territorial Cooperation Program Greece–Bulgaria 2007–2013 with the acronym ENERGEIA. The power plant simulated in this paper includes a 234 kWth solar parabolic trough collector (PTC) field, a 5 m3 thermal energy storage tank, and a 5 kWe ORC engine for the production of thermal and electrical energies. The results of the simulations present small deviation in contrast to the real operating data of the CSP power plant coupled with the ORC engine, therefore the simulation model is considered as reliable.


2021 ◽  
Vol 1 (1) ◽  
pp. 15-24
Author(s):  
Malik El’Houyoun Ahamadi ◽  
Hery T. Rakotondramiarana

In the ylang-ylang essential oil distillers in Anjouan Island, the used energy is 100% firewood biomass. A large amount of this energy is dissipated in the environment just in the combustion chamber itself. As it turns out, the flue gases in this process take away the most part of it. Thus, in a process of energy efficiency of stills, the present work aims at assessing the possibility to convert the residual heat from the process into electricity. For that purpose, energy and exergy modeling of an organic Rankine cycle was implemented. It was found that a large amount of exergy is destroyed in the evaporator. Similarly, it emerges that the exergy efficiency of the cycle depends on the inlet temperatures of the exhaust gases in the evaporator and on the inlet pressure of the working fluid in the turbine, and that it is much better for low exhaust gas temperatures. At these low values of gas temperatures, it appears that the improvement in exergy efficiency and energy efficiency are linked to the increase in the inlet pressure of the working fluid in the turbine. It follows from the obtained results that the discharged hot water and the residual heat of gases having temperatures ranging from 180°C to 300 °C, could be used for power production which can reach electrical powers between 1.4kW and 4.5kW  


Processes ◽  
2020 ◽  
Vol 8 (5) ◽  
pp. 607
Author(s):  
Omer Mohamed Abubaker Al-hotmani ◽  
Mudhar Abdul Alwahab Al-Obaidi ◽  
Yakubu Mandafiya John ◽  
Raj Patel ◽  
Iqbal Mohammed Mujtaba

In recent times two or more desalination processes have been combined to form integrated systems that have been widely used to resolve the limitations of individual processes as well as producing high performance systems. In this regard, a simple integrated system of the Multi Effect Distillation (MED)/Thermal Vapour Compression (TVC) and Permeate Reprocessing Reverse Osmosis (PRRO) process was developed by the same authors and confirmed its validity after a comparison study against other developed configurations. However, this design has a considerable amount of retentate flowrate and low productivity. To resolve this issue, two novel designs of MED and double reverse osmosis (RO) processes including Permeate and Retentate Reprocessing designs (PRRP and RRRO) are developed and modelled in this paper. To systematically assess the consistency of the presented designs, the performance indicators of the novel designs are compared against previous simple designs of MED and PRRO processes at a specified set of operating conditions. Results show the superiority of the integrated MED and double permeate reprocessing design. This has specifically achieved both economic and environmental advantages where total productivity is increased by around 9% and total retentate flowrate (disposed to water bodies) is reduced by 5% with a marginally reduced energy consumption.


Author(s):  
Sylvain Quoilin ◽  
Olivier Dumont ◽  
Kristian Harley Hansen ◽  
Vincent Lemort

In this paper, an innovative system combining a heat pump (HP) and an organic Rankine cycle (ORC) process is proposed. This system is integrated with a solar roof, which is used as a thermal source to provide heat in winter months (HP mode) and electricity in summer months (ORC mode) when an excess irradiation is available on the solar roof. The main advantage of the proposed unit is its similarity with a traditional HP: the HP/ORC unit only requires the addition of a pump and four-way valves compared to a simple HP, which can be achieved at a low cost. A methodology for the optimal sizing and design of the system is proposed, based on the optimization of both continuous parameters such as heat exchanger size or discrete variables such as working fluid. The methodology is based on yearly simulations, aimed at optimizing the system performance (the net yearly power generation) over its whole operating range instead of just nominal sizing operating conditions. The simulations allow evaluating the amount of thermal energy and electricity generated throughout the year, yielding a net electric power output of 3496 kWh throughout the year.


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4770
Author(s):  
Jesús García-Domínguez ◽  
J. Daniel Marcos

Modular and scalable distributed generation solutions as combined cooling, heating and power (CCHP) systems are currently a promising solution for the simultaneous generation of electricity and useful heating and cooling for large buildings or industries. In the present work, a solar-heated trigeneration approach based on different organic Rankine cycle (ORC) layouts and a single-effect H2O/LiBr absorption heat pump integrated as a bottoming cycle is analysed from the thermodynamic viewpoint. The main objective of the study is to provide a comprehensive guide for selecting the most suitable CCHP configuration for a solar-heated CCHP system, following a systematic investigation approach. Six alternative CCHP configurations based on single-pressure and dual-pressure ORC layouts, such as simple, recuperated and superheated cycles, and their combinations, and seven organic fluids as working medium are proposed and compared systematically. A field of solar parabolic trough collectors (SPTCs) used as a heat source of the ORC layouts and the absorption heat pump are kept invariant. A comprehensive parametric analysis of the different proposed configurations is carried out for different design operating conditions. Several output parameters, such as energy and exergy efficiency, net electrical power and electrical to heating and cooling ratios are examined. The study reveals that the most efficient CCHP configuration is the single-pressure ORC regenerative recuperated superheated cycle with toluene as a working fluid, which is on average 25% and 8% more efficient than the variants with single-pressure simple cycle and the dual-pressure recuperated superheated cycle, respectively. At nominal design conditions, the best performing CCHP variant presents 163.7% energy efficiency and 12.3% exergy efficiency, while the electricity, cooling and heating productions are 56.2 kW, 223.0 kW and 530.1 kW, respectively.


2019 ◽  
Vol 78 (2) ◽  
pp. 96-99
Author(s):  
E. E. KOSSOV ◽  
V. V. ASABIN ◽  
A. G. SILYUTA ◽  
L. E. L. E. KOSSOVA

The article proposes to evaluate the efficiency of an autonomous vehicle, taking into account not only the energy consumption for motion, but also the time of motion, i. e. both factors — efficiency and performance — should be taken into account. As a criterion for evaluating the efficiency of vehicles, authors propose the multiplication of efficiency on performance — the energy efficiency indicator (EEI). The best will be the vehicle with the highest EEI. The indicator should be calculated according to the specified technical characteristics of the vehicle laid down in the technical specifications. This criterion is suitable both for the evaluation of the vehicle during the design and during operation. At the same time, it is possible to evaluate and compare the EEI of technical vehicles not only of railway transport. The article presents the criterion values for water, rail and air transport. Proposed criterion makes it possible to evaluate the change in vehicle efficiency over time due to technical progress. Since 1953, the energy efficiency of a diesel locomotive has increased almost 3 times. To calculate the operational energy efficiency, it is necessary to obtain data on the actual performance of the vehicle. On railway transport, this is data on train work in t·km, speed and fuel consumption. The EEI assessment based on operating data will show how correctly the organization of vehicle operation is built, how non-stationary modes of the power plant and specific modes of traction influence the overall performance of the vehicle, how well the vehicle is selected for these operating conditions.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Muhammad Sajid Khan ◽  
Muhammad Abid ◽  
Khuram Pervez Amber ◽  
Hafiz Muhammad Ali ◽  
Mi Yan ◽  
...  

Parabolic dish solar collectors gain higher solar to thermal conversion efficiency due to their maximum concentration ratio. The present research focuses by integrating the parabolic dish solar collector to the steam cycle producing power and rate of process heating. Pressurized water, therminol VP1, and supercritical carbon dioxide are the examined working fluids in the parabolic dish solar collector. The aim of the current research is to observe the optimal operating conditions for each heat transfer fluid by varying inlet temperature and flow rate of the working fluid in the parabolic dish solar collector, and combination of these parameters is predicted to lead to the maximum energy and exergy efficiencies of the collector. The operating parameters are varied to investigate the overall system efficiencies, work output, and process heating rate. Findings of the study declare that water is an efficient heat transfer fluid at low temperature levels, whereas therminol VP1 is effective for a higher temperature range. The integrated system efficiencies are higher at maximum flow rates and low inlet temperatures. The efficiency map of solar collector is located at the end of study, and it shows that maximum exergy efficiency gains at inlet temperature of 750 K and it is observed to be 37.75%.


Energies ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 3385 ◽  
Author(s):  
Patricia Palenzuela ◽  
Marina Micari ◽  
Bartolomé Ortega-Delgado ◽  
Francesco Giacalone ◽  
Guillermo Zaragoza ◽  
...  

A performance analysis of a salinity gradient heat engine (SGP-HE) is presented for the conversion of low temperature heat into power via a closed-loop Reverse Electrodialysis (RED) coupled with Multi-Effect Distillation (MED). Mathematical models for the RED and MED systems have been purposely developed in order to investigate the performance of both processes and have been then coupled to analyze the efficiency of the overall integrated system. The influence of the main operating conditions (i.e., solutions concentration and velocity) has been quantified, looking at the power density and conversion efficiency of the RED unit, MED Specific Thermal Consumption (STC) and at the overall system exergy efficiency. Results show how the membrane properties (i.e., electrical resistance, permselectivity, water and salt permeability) dramatically affect the performance of the RED process. In particular, the power density achievable using membranes with optimized features (ideal membranes) can be more than three times higher than that obtained with current reference ion exchange membranes. On the other hand, MED STC is strongly influenced by the available waste heat temperature, feed salinity and recovery ratio to be achieved. Lowest values of STC below 25 kWh/m3 can be reached at 100 °C and 27 effects. Increasing the feed salinity also increases the STC, while an increase in the recovery ratio is beneficial for the thermal efficiency of the system. For the integrated system, a more complex influence of operating parameters has been found, leading to the identification of some favorable operating conditions in which exergy efficiency close to 7% (1.4% thermal) can be achieved for the case of current membranes, and up to almost 31% (6.6% thermal) assuming ideal membrane properties.


Sign in / Sign up

Export Citation Format

Share Document