Regulation Mechanism of Microribs on Heat Transfer Process of Cracking Reactive Flow With Strong Thermal Stratification

2020 ◽  
Vol 142 (11) ◽  
Author(s):  
Xin Li ◽  
Silong Zhang ◽  
Jiang Qin ◽  
Wen Bao

Abstract Microrib is regarded as an efficient method to regulate the heat transfer and thermal cracking of hydrocarbon fuel in regenerative cooling channels of advanced aero-engines. In order to explore the regulation mechanism of microribs on heat transfer of endothermic hydrocarbon fuel with thermal cracking in the unilateral heated channels, a three-dimensional simulation model including a 22-step cracking mechanism was built and experimentally tested. Besides, a macroscopic approach based on time scale analysis is proposed to estimate effects of obstacles on turbulence and thermal cracking. The studies demonstrated that due to unilateral heating, the regulation of microribs on heat transfer and thermal cracking is nonuniform in the channel, relating to local turbulence intensity and fluid properties. Particularly, the thermal cracking of fuel responses more slowly than turbulence when meeting obstacles. In this case, the regulation of microribs on the heat transfer characteristics of cracking hydrocarbon fuel is dominated by the direct perturbation of microribs on flow momentum, not through promoting chemical absorption of thermal cracking by microribs. Furthermore, higher fuel conversion and higher fluid temperature both assist the promotion of microribs on thermal cracking to a limited extent but has little effect on the acceleration of microribs on local turbulent flow.

Author(s):  
Michel Arnal ◽  
Christian Precht ◽  
Thomas Sprunk ◽  
Tobias Danninger ◽  
John Stokes

The present paper outlines a practical methodology for improved virtual prototyping, using as an example, the recently re-engineered, internally-cooled 1st stage blade of a 40 MW industrial gas turbine. Using the full 3-D CAD model of the blade, a CFD simulation that includes the hot gas flow around the blade, conjugate heat transfer from the fluid to the solid at the blade surface, heat conduction through the solid, and the coolant flow in the plenum is performed. The pressure losses through and heat transfer to the cooling channels inside the airfoil are captured with a 1-D code and the 1-D results are linked to the three-dimensional CFD analysis. The resultant three-dimensional temperature distribution through the blade provides the required thermal loading for the subsequent structural finite element analysis. The results of this analysis include the thermo-mechanical stress distribution, which is the basis for blade life assessment.


2011 ◽  
Vol 228-229 ◽  
pp. 676-680 ◽  
Author(s):  
Ye Tian ◽  
Xun Liang Liu ◽  
Zhi Wen

A three-dimensional mathematic model is developed for a 100kw single-end recuperative radiant tube and the simulation is performed with the CFD software FLUENT. Also it is used to investigate the effect of distance between combustion chamber exit and inner tube on heat transfer process. The results suggest that the peak value of combustion flame temperature drops along with the increasing of distance, which leads to low NOX discharging. Also radiant tube surface bulk temperature decreases, which causes radiant tube heating performance losses.


Author(s):  
Long-gang Liu ◽  
Chun-wei Gu ◽  
Xiao-dong Ren

Convective cooling channels are applied in a two-dimensional compressor vane to use the intercooling method to improve the efficiency of Brayton cycle and reduce the temperature of the vane. In this paper, we analyze the effect of coolant to the aerodynamic performance and heat transfer performance of the main stream and the vane. For the case of a two-dimensional compressor vane NACA65-(12A2I8b)10, the vane which has five convective cooling channels has been numerically simulated in different test conditions by discontinuous Galerkin (DG) method. The coolant is supercritical carbon dioxide whose pressure is 10MPa. Conjugate heat transfer method has been used in this paper. The numerical simulation result is similar to the experiment data and has been compared with the result of the vane without cooling channels to prove the effect of cooling channels. Cooling channels have large effect on the distribution of temperature and heat transfer coefficient. In addition, the relationship between Nu and Re on the fluid-solid interface has been analyzed and a suitable empirical equation has been obtained. This work analyzes the effect of intercooling system in the compressor and give several advice on future engineering applications in aero engines and gas turbines.


Author(s):  
Xia Li ◽  
Qun Chen ◽  
Xi Chen

Due to the peculiar physical properties, supercritical carbon dioxide (sCO2) is considered as a promising working fluid in power generation cycles with high reliability, simple structure and great efficiency. Compared with the general thermal systems, the variable properties of sCO2 make the system models obtained by the traditional modelling method more complex. Besides, the pressure distribution in the system will affect the distribution of the fluid properties, the fluid properties influencing the heat transfer process will produce an impact on the temperature distribution which will in turn affect the pressure distribution through the mass flow characteristics of all components. This contribution introduces the entransy-based power flow method to analyze and optimize a recompression sCO2 power generation system under specific boundary conditions. About the heat exchanger, by subdividing the heat transfer area into several segment, the fluid properties in each segment are considered constant. Combining the entransy dissipation thermal resistance of each segment and the energy conservation of each fluid in each segment offers the governing equations for the whole heat transfer process without any intermediate segment temperatures, based on which the power flow diagram of the overall heat transfer process is constructed. Meanwhile, the pressure drops are constrained by the mass flow characteristics of each component, and the inlet and outlet temperatures of compressors and turbines are constrained by the isentropic process constraints and the isentropic efficiencies. Combining the governing equations for the heat exchangers and the constraints for turbine and the compressors, the whole system is modeled by sequential modular method. Based on this newly developed model, applying the genetic algorithm offers the maximum thermal efficiency of the system and the corresponding optimal operating variables, such as the mass flow rate of the working fluid in the cycle, the heat capacity rate of the cold source and the recompression mass fraction under the given heat source. Furthermore, the optimization of the system under different boundary conditions is conducted to study its influence on the optimal mass flow rate of the working fluid, the heat capacity of the cold source and the maximum system thermal efficiency. The results proposes some useful design suggestions to get better performance of the recompression supercritical carbon dioxide power generation system.


Author(s):  
Leila Choobineh ◽  
Dereje Agonafer ◽  
Ankur Jain

Heterogeneous integration in microelectronic systems using interposer technology has attracted significant research attention in the past few years. Interposer technology is based on stacking of several heterogeneous chips on a common carrier substrate, also referred to as the interposer. Compared to other technologies such as System-on-Chip (SoC) or System-in-Package (SiP), interposer-based integration offers several technological advantages. However, the thermal management of an interposer-based system is not well understood. The presence of multiple heat sources in various die and the interposer itself needs to be accounted for in any effective thermal model. While a finite-element based simulation may provide a reasonable temperature prediction tool, an analytical solution is highly desirable for understanding the fundamentals of the heat transfer process in interposers. In this paper, we describe our recent work on analytical modeling of heat transfer in interposer-based microelectronic systems. The basic governing energy conservation equations are solved to derive analytical expressions for the temperature distribution in an interposer-based microelectronic system. These solutions are combined with an iterative approach to provide the three-dimensional temperature field in an interposer. Results are in excellent agreement with finite-element solutions. The analytical model is utilized to study the effect of various parameters on the temperature field in an interposer system. Results from this work may be helpful in the thermal design of microelectronic systems containing interposers.


Author(s):  
Richard W. Jackson ◽  
Dario Luberti ◽  
Hui Tang ◽  
Oliver J. Pountney ◽  
James A. Scobie ◽  
...  

Abstract The flow inside cavities between co-rotating compressor discs of aero-engines is driven by buoyancy, with Grashof numbers exceeding 1013. This phenomenon creates a conjugate problem: the Nusselt numbers depend on the radial temperature distribution of the discs, and the disc temperatures depend on the Nusselt numbers. Furthermore, Coriolis forces in the rotating fluid generate cyclonic and anti-cyclonic circulations inside the cavity. Such flows are three-dimensional, unsteady and unstable, and it is a challenge to compute and measure the heat transfer from the discs to the axial throughflow in the compressor. In this paper, Nusselt numbers are experimentally determined from measurements of steady-state temperatures on the surfaces of both discs in a rotating cavity of the Bath Compressor-Cavity Rig. The data are collected over a range of engine-representative parameters and are the first results from a new experimental facility specifically designed to investigate buoyancy-induced flow. The radial distributions of disc temperature were collected under carefully-controlled thermal boundary conditions appropriate for analysis using a Bayesian model combined with the equations for a circular fin. The Owen-Tang buoyancy model has been used to compare predicted radial distributions of disc temperatures and Nusselt numbers with some of the experimentally determined values, taking account of radiation between the interior surfaces of the cavity. The experiments show that the average Nusselt numbers on the disc increase as the buoyancy forces increase. At high rotational speeds the temperature rise in the core, created by compressibility effects in the air, attenuates the heat transfer and there is a critical rotational Reynolds number for which the Nusselt number is a maximum. In the cavity, there is an inner region dominated by forced convection and an outer region dominated by buoyancy-induced flow. The inner region is a mixing region, in which entrained cold throughflow encounters hot flow from the Ekman layers on the discs. Consequently, the Nusselt numbers on the downstream disc in the inner region tend to be higher than those on the upstream disc.


Fuel ◽  
2013 ◽  
Vol 103 ◽  
pp. 1132-1137 ◽  
Author(s):  
Ling-yun Hou ◽  
Ning Dong ◽  
Da-peng Sun

Author(s):  
Richard Jackson ◽  
Dario Luberti ◽  
Hui Tang ◽  
Oliver J Pountney ◽  
James Scobie ◽  
...  

Abstract The flow inside cavities between co-rotating compressor discs of aero-engines is driven by buoyancy, with Grashof numbers exceeding 1013. This phenomenon creates a conjugate problem: the Nusselt numbers depend on the radial temperature distribution of the discs, and the disc temperatures depend on the Nusselt numbers. Furthermore, Coriolis forces in the rotating fluid generate cyclonic and anti-cyclonic circulations inside the cavity. Such flows are three-dimensional, unsteady and unstable, and it is a challenge to compute and measure the heat transfer from the discs to the axial throughflow in the compressor. In this paper, Nusselt numbers are experimentally determined from measurements of steady-state temperatures on the surfaces of both discs in a rotating cavity of the Bath Compressor-Cavity Rig. The data are collected over a range of engine-representative parameters and are the first results from a new experimental facility specifically designed to investigate buoyancy-induced flow. The radial distributions of disc temperature were collected under carefully-controlled thermal boundary conditions appropriate for analysis using a Bayesian model combined with the equations for a circular fin. The Owen-Tang buoyancy model has been used to compare predicted radial distributions of disc temperatures and Nusselt numbers with some of the experimentally determined values, taking account of radiation between the interior surfaces of the cavity. The experiments show that the average Nusselt numbers on the disc increase as the buoyancy forces increase. At high rotational speeds the temperature rise in the core, created by compressibility effects in


2011 ◽  
Vol 311-313 ◽  
pp. 1953-1956
Author(s):  
Jing Fu Jia ◽  
Wei He

To choose the suitable heat insulating material for refrigerated cargo hold shipboard of fishing vessel, a steady state three-dimensional mathematical model of heat transfer is developed in this paper. The heat-transfer model is simplified reasonably in order to facilitate analyzing and solving. After defining the boundary conditions of the model according to the heat-transfer process of the shipboard, numerical simulations with different heat insulating material are performed using computational fluid dynamics (CFD) software PHOENICS. The obtained temperature distributions of the model in each case are analyzed. The suitable one is pointed out according to the degree of influence of the heat insulating material on heat-transfer property of the shipboard.


Sign in / Sign up

Export Citation Format

Share Document