Experimental Evaluation in Thermal Conductivity Enhancement and Heat Transfer Optimization of Eco-Friendly Al2O3–Pure Coconut Oil Based Nano Fluids

Author(s):  
S. V. Sujith ◽  
Anand Kumar Solanki ◽  
Rahul S. Mulik

Abstract The present study reports an experimental evaluation of thermal conductivity of Al2O3/pure coconut oil nano fluids with solid volume fraction varying from 0.1% to 1.2% at a temperature ranging from 303 K to 413 K, respectively. Additionally, the thermophysical properties such as thermal diffusivity, density, and specific heat were also measured. The effect of solid volume fraction and temperature on thermophysical properties of nano fluids was examined. The results confirmed that the thermal conductivity of nano fluids was higher than that of the base fluid with an increase in the solid volume fraction and temperature. Apart from this, the efficiency of nano fluids for the heat transfer application has been evaluated for optimization based on different figures of merit. Further, the experimental thermal conductivity data were compared with different existing models and correlations as the thermal conductivity enhancement of the nano fluid is directly or indirectly a function of almost all thermophysical properties. Hence, a novel dimensionless correlation was developed for predicting the thermal conductivity of pure coconut oil/Al2O3 nano fluids in terms of almost all the thermophysical parameters calculated from the experimental data.

2020 ◽  
Vol 1008 ◽  
pp. 47-52
Author(s):  
Abdallah Yousef Mohammed Ali ◽  
Ahmed Hassan El-Shazly ◽  
Marwa Farouk El-Kady ◽  
Hesham Ibrahim Elqady ◽  
Kholoud Madih ◽  
...  

Magnesium oxide (MgO) nanoparticles were synthesized using the sol-gel technique then characterized. Cetyl Trimethyl Ammonium Bromide (CTAB) surfactant was added to reduce Van der Waal forces among MgO nanoparticles and distilled water forming a stable nanofluid using two-step method with aid of ultrasound sonication. Pure distilled water and nanofluids with different volume fractions of 0.25, 0.5, 0.75, and 1% are used as working fluids. Thermophysical properties of prepared nanofluids were measured experimentally and determined theoretically. Effect of solid volume fraction on the thermophysical properties; including thermal conductivity, heat capacity, viscosity, and density of MgO-water nanofluids are discussed. Moreover, experimental results have been compared with the suitable correlations for MgO-water nanofluid. The findings show that thermal conductivity, viscosity, and density of nanofluid increases with increasing solid volume fraction.


Author(s):  
Adnan Alashkar ◽  
Mohamed Gadalla

In this present paper, nanoparticles are dispersed into a base fluid, their effect on the thermophysical properties and overall heat transfer coefficient of the fluid inside a circular tube representing an absorber tube of a Parabolic Trough Solar Collector (PTSC) is studied. Different models are used to predict the effective density, specific heat capacity, viscosity and thermal conductivity of the nanofluids. For the analytical analysis, Alumina (Al2O3), Copper (Cu) and Single Wall Carbon Nanotubes (SWCNT) nanoparticles are dispersed into Therminol VP-1 oil. The resulting nanofluids are compared in terms of their thermophysical properties, their convective heat transfer characteristics and their overall heat transfer coefficient. Moreover, the effect on increasing the volume fraction on the properties and the heat transfer coefficient is studied. The computational analysis results show that the thermal conductivity increases with the increase of the volume fraction. In addition Therminol/SWCNT showed the highest thermal conductivity enhancement of 98% for a volume fraction of 3%. Further, the overall heat transfer coefficient increases with the increase of volume fraction, and Therminol/SWCNT showed the highest enhancement with 72% compared to Al2O3/Therminol and Cu/Therminol that showed an enhancement of 29% and 43% respectively.


Author(s):  
S. Mishra ◽  
M.K. Nayak ◽  
A. Misra

The present study deals with a comprehensive review on the enhancement of effective thermal conductivity of nanofluids. The present article summarizes the recent research developments regarding the theoretical and experimental investigations about thermal conductivity of different nanofluids. The current study analyzes several factors those strongly affecting thermal conductivity of nanofluids include solid volume fraction, temperature, particle size, particle type, particle shape, different base fluids, magnetic field, pH, surfactant and ultrasonic time. In addition, different reasonably attractive models contributing augmentation of thermal conductivity of nanofluids are invoked. Finally, important heat transfer mechanisms namely Brownian motion, nanoclustering, thermophoresis, osmophoresis and interfacial nano-layer responsible for significant role in ameliorating the thermal conductivity and therefore the heat transfer characteristics of nanofluids are discussed.


2019 ◽  
Vol 961 ◽  
pp. 148-155
Author(s):  
Muhaimin Ismoen ◽  
Radiah Bte Mohamad ◽  
R. Kandasamy ◽  
Suliadi Firdaus Sufahani ◽  
Fazlul Karim ◽  
...  

The performance of carbon nanotube (CNT) nanofluids on convective heat transfer over a stretching sheet was investigated under thermal stratification and magnetic field effects. Water, engine oil and ethylene glycol are used as the base fluids. The governing equations are transformed into a system of coupled nonlinear ordinary differential equations using similarity transformations and solved numerically using the fourth-order Runge–Kutta–Fehlberg in conjunction to shooting method. The CNT nanofluids with an engine oil base fluid shows the highest thermal conductivity in comparison to ethylene glycol and water, respectively. Potential application of the thermal conductivity enhancement of CNT nanofluid is to increase the energy-efficient mechanical systems in heating, cooling and ventilation of the indoor environment.


Author(s):  
Md. Rakibul Hasan Roni ◽  
AKM M. Morshed ◽  
Amitav Tikadar ◽  
Titan C. Paul ◽  
Jamil A. Khan

Abstract Nanofluids have become the subject of theoretical and experimental researches over the few decades due to their enhanced heat transfer performance. In this study, thermal conductivity of copper argon nanofluids is determined through MD simulation. Different types of nanoparticles based on shape was used to make nanofluids. Role of different shape of nanoparticles such as cylindrical, cubical and spherical was disused. Green Kubo method is employed to determine the thermal conductivity of the nanofluids. Result shows that, for volume fraction 3% and 86 K system temperature, thermal conductivity enhancement of nanofluid containing spherical, cubical and cylindrical shape is 15%, 40% and 50% respectively compared with that of base fluid. Thermal conductivity enhancement of nanofluid for spherical particle at 86 K, 94 K and 102 K is 15%, 30% and 40% respectively while for volume fraction 3%, 6% and 9%, the enhancement is 15%, 35% and 45% respectively. The mechanism of increased heat transfer performance for different shape of the nanoparticles is discussed in this paper.


2017 ◽  
Vol 261 ◽  
pp. 121-126 ◽  
Author(s):  
Alina Adriana Minea ◽  
Madalina Georgiana Moldoveanu ◽  
Oana Dodun

Ionanofluids are a very new class of nanofluids having ionic liquids as the base fluid. Thermophysical properties of base ionic liquids (ILs) and nanoparticle enhanced ionic liquids (NEILs) are part of studying a new class of fluids for heat transfer. NEILs are formed by dispersing different volume fractions of nanoparticles in a base ionic liquid. In this article, only the thermal conductivity enhancement was considered for comparison of the different ionanofluids. NEILs show enhanced thermal conductivity compared to the base ILs. Maximum thermal conductivity enhancement was observed by adding 1 % MWCNT to [C4mim][(CF3SO2)2N] ionic liquid. However, if 0.05% MWCNT are added to [(C6)3PC14)][NTf2] no enhancement in thermal conductivity was noticed.


Author(s):  
Ningbo Zhao ◽  
Qiang Wang ◽  
Shuying Li

To compare and understand the laminar thermal-hydraulic performance of plate-fin channel with rectangle plain fin by using variable thermophysical properties of the most commonly used nanofluids (Al2O3-water), a three-dimensional numerical study is investigated by using the single-phase approach at a constant wall temperature boundary condition. Different models published in literatures are considered for the thermal conductivity and viscosity. On this basis, a parametric analysis is conducted to evaluate the effects of various pertinent parameters including nanoparticle volume fraction (0%–4%), Brownian motion of nanoparticle and Reynolds number (800–1500) on the heat transfer and flow characteristics of plain fin channel in detail. All the numerical results demonstrate that the addition of Al2O3 nanoparticle can enhance the heat transfer and flow pressure loss of base fluid because of the higher thermal conductivity and viscosity for nanofluids. And these enhancements are more obvious by increasing the volume fraction of nanoparticle, increasing Reynolds number, and considering the effects of nanoparticle Brownian motion. In addition, there are significantly differences in the thermal and flow fields for different nanofluids models at a fixed Reynolds number, which means that the effective theoretical formulas and empiric corrections for the nanofluids thrmophysical properties need to be studied extensively in the future.


2021 ◽  
Vol 1025 ◽  
pp. 9-14
Author(s):  
Adnan H. Rasheed ◽  
Hajar Alias ◽  
Sami D. Salman

This paper presents the thermophysical properties of zinc oxide nanofluid that have been measured for experimental investigation. The main contribution of this study is to define the heat transfer characteristics of nanofluids. The measuring of these properties was carried out within a range of temperatures from 25 °C to 45 °C, volume fraction from 1 to 2 %, and the average nanoparticle diameter size is 25 nm, and the base fluid is water. The thermophysical properties, including viscosity and thermal conductivity, were measured by using Brookfield rotational Viscometer and Thermal Properties Analyzer, respectively. The result indicates that the thermophysical properties of zinc oxide nanofluid increasing with nanoparticle volume fraction increasing, as well as the thermophysical properties of zinc oxide nanofluid affected by the change in temperature.


Author(s):  
Subramanian Muthukumar ◽  
Selvaraj Sureshkumar ◽  
Arthanari Malleswaran ◽  
Murugan Muthtamilselvan ◽  
Eswari Prem

Abstract A numerical investigation on the effects of uniform and non-uniform heating of bottom wall on mixed convective heat transfer in a square porous chamber filled with nanofluid in the appearance of magnetic field is carried out. Uniform or sinusoidal heat source is fixed at the bottom wall. The top wall moves in either positive or negative direction with a constant cold temperature. The vertical sidewalls are thermally insulated. The finite volume approach based on SIMPLE algorithm is followed for solving the governing equations. The different parameters connected with this study are Richardson number (0.01 ≤ Ri ≤ 100), Darcy number (10−4 ≤ Da ≤ 10−1), Hartmann number (0 ≤ Ha ≤ 70), and the solid volume fraction (0.00 ≤ χ ≤ 0.06). The results are presented graphically in the form of isotherms, streamlines, mid-plane velocities, and Nusselt numbers for the various combinations of the considered parameters. It is observed that the overall heat transfer rate is low at Ri = 100 in the positive direction of lid movement, whereas it is low at Ri = 1 in the negative direction. The average Nusselt number is lowered on growing Hartmann number for all considered moving directions of top wall with non-uniform heating. The low permeability, Da = 10−4 keeps the flow pattern same dominating the magnetic field, whereas magnetic field strongly affects the flow pattern dominating the high Darcy number Da = 10−1. The heat transfer rate increases on enhancing the solid volume fraction regardless of the magnetic field.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Anum Shafiq ◽  
Tabassum Naz Sindhu ◽  
Qasem M. Al-Mdallal

AbstractThe current research explores incremental effect of thermal radiation on heat transfer improvement corresponds to Darcy–Forchheimer (DF) flow of carbon nanotubes along a stretched rotating surface using RSM. Casson carbon nanotubes’ constructed model in boundary layer flow is being investigated with implications of both single-walled CNTs and multi-walled CNTs. Water and Ethylene glycol are considered a basic fluid. The heat transfer rate is scrutinized via convective condition. Outcomes are observed and evaluated for both SWCNTs and MWCNTs. The Runge–Kutta Fehlberg technique of shooting is utilized to numerically solve transformed nonlinear ordinary differential system. The output parameters of interest are presumed to depend on governing input variables. In addition, sensitivity study is incorporated. It is noted that sensitivity of SFC via SWCNT-Water becomes higher by increasing values of permeability number. Additionaly, sensitivity of SFC via SWCNT-water towards the permeability number is higher than the solid volume fraction for medium and higher permeability levels. It is also noted that sensitivity of SFC (SWCNT-Ethylene-glycol) towards volume fraction is higher for increasing permeability as well as inertia coefficient. Additionally, the sensitivity of LNN towards the Solid volume fraction is higher than the radiation and Biot number for all levels of Biot number. The findings will provide initial direction for future device manufacturing.


Sign in / Sign up

Export Citation Format

Share Document