Experimental Analysis of Blade-Casing Contacts in a Centrifugal Compressor: Vibration and Thermal Aspects

Author(s):  
Nicolas Guerin ◽  
Claude Gibert ◽  
Fabrice Thouverez ◽  
Patricio Almeida

Abstract Due to an increasing need for efficiency of turboengines, rotor--stator clearances are being lowered. Therefore, new designs show higher probability for contacts between rotors and casings. When contacts occur, high dynamic excitation levels as well as high temperatures due to dissipative mechanical phenomena may be expected. While numerical investigations have been proposed in the past, experiments are of high interest to fully understand the underlying phenomena behind rotor-stator contact interactions. In order to assess this situation, and based on former work performed by part of the authors, a rotor--stator contact rig has been used to investigate the mechanical and thermal behavior of a centrifugal low-pressure helicopter engine compressor. This rig operates under vacuum conditions to significantly reduce influence of the air surrounding the studied components. During the tests, multiple contact phases have been identified through increased vibration and temperature levels, as well as torque and rotational speed variations. A comprehensive analysis of the dynamic and thermal phenomena occurring during these experimental tests is proposed in this paper. Dynamic measurements are analyzed in the time and frequency domains, and nodal diameter contents are evaluated as well through full spectrum analyses. As a result, major influences from synchronous excitations in the frequency range of interest but also of higher modal families are highlighted. Post-trial observations indicate severe contact conditions leading to very high temperatures, abradable coating removal and material transfer between blade and casing.

Author(s):  
Nicolas Guérin ◽  
Claude Gibert ◽  
Fabrice Thouverez ◽  
Patricio Almeida

Abstract Due to an increasing need for efficiency of turboengines, rotor–stator clearances are being lowered. Therefore, new designs show higher probability for contacts between rotors and casings. When contacts occur, high dynamic excitation levels as well as high temperatures due to dissipative mechanical phenomena may be expected. While numerical investigations have been proposed in the past, experiments are of high interest to fully understand the underlying phenomena behind rotor-stator contact interactions. In order to assess this situation, and based on former work performed by part of the authors, a rotor–stator contact rig has been used to investigate the mechanical and thermal behavior of a centrifugal low-pressure helicopter engine compressor. This rig operates under vacuum conditions to significantly reduce influence of the air surrounding the studied components. A near-zero gap condition is set at rest, then a rotational speed sweep allows to target the specific operating range of interest. Both structures are fitted with strain gauges, and a torquemeter is installed on the shaft to measure resistive phenomena on the bladed disk. A scanning laser Doppler vibrometer is aimed at the casing through a window to provide additional displacement measurements. Temperatures are measured by an array of thermocouples equally spaced around the casing, close to the expected contact area. Also, using temperature-sensitive markings, overall temperature mappings on the impeller are performed. During the tests, multiple contact phases have been identified through increased vibration and temperature levels, as well as torque and rotational speed variations. A comprehensive analysis of the dynamic and thermal phenomena occurring during these experimental tests is proposed in this paper. Dynamic measurements are analyzed in the time and frequency domains, and nodal diameter contents are evaluated as well through full spectrum analyses. As a result, major influences from synchronous excitations in the frequency range of interest but also of higher modal families are highlighted. Post-trial observations indicate severe contact conditions leading to very high temperatures, abradable coating removal and material transfer between blade and casing.


Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5562
Author(s):  
Mariusz Baranski ◽  
Wojciech Szelag ◽  
Wieslaw Lyskawinski

The paper justifies the validity of analyzing the impact of temperature and the process of partial demagnetization of magnets on the operating parameters of machines. To analyze this impact, a field model of coupled electromagnetic and thermal phenomena in a permanent magnet synchronous motor was proposed. The non-linearity of the magnetic circuit, the effect of temperature on the magnetic, electrical and thermal properties of the materials as well as the developed method of modeling the process of partial demagnetization of the magnet were taken into account. Based on this model, an algorithm and software were developed to analyze the effect of temperature and the process of partial demagnetization of magnets on the work of the line start permanent magnet synchronous motor (LSPMSM). The elaborated software was used to study the effect of temperature during the motor starting phase on the magnetization state of the magnets after the start-up process. The calculation results were compared to the results of experimental studies. The experimental tests were carried out on a specially constructed test stand. The results of the research on the process of partial demagnetization of the magnets are presented and the conclusions resulting therefrom formulated.


Author(s):  
Nicolas Salvat ◽  
Alain Batailly ◽  
Mathias Legrand

In modern turbomachinery, abradable materials are implemented on casings to reduce operating tip clearances and mitigate direct unilateral contact occurrences between rotating and stationary components. However, both experimental and numerical investigations revealed that blade/abradable interactions may lead to blade failures. In order to comprehend the underlying mechanism, an accurate modeling of the abradable removal process is required. Time-marching strategies where the abradable removal is modeled through plasticity are available but another angle of attack is proposed in this work. It is assumed that the removal of abradable liners shares similarities with machine tool chatter encountered in manufacturing. Chatter is a self-excited vibration caused by the interaction between the machine and the workpiece through the cutting forces and the corresponding dynamics are efficiently captured by delay differential equations. These equations differ from ordinary differential equations in the sense that previous states of the system are involved in the formulation. This mathematical framework is employed here for the exploration of the blade stability during abradable removal. The proposed tool advantageously features a reduced computational cost and consistency with existing time-marching solution methods. Potentially dangerous interaction regimes are accurately predicted and instability lobes match both the flexural and torsional modal responses. Essentially, the regenerative nature of chatter in machining processes can also be attributed to abradable coating removal in turbomachinery.


Solar Energy ◽  
2004 ◽  
Author(s):  
Dan Dye ◽  
Byard Wood ◽  
Lewis Fraas ◽  
Jeanette Kretschmer

A non-imaging (NI) device and thermophotovoltaic (TPV) array for use in a full-spectrum solar energy system has been designed, built, and tested [1,2,3]. This system was designed to utilize the otherwise wasted infrared (IR) energy that is separated from the visible portion of the solar spectrum before the visible light is harvested. The IR energy will be converted to electricity via a gallium antimonide (GaSb) TPV array. The experimental apparatus for the testing of the IR optics and TPV performance is described. Array performance data will be presented, along with a comparison between outdoor experimental tests and laboratory flash tests. An analysis of the flow of the infrared energy through the collection system will be presented, and recommendations will be made for improvements. The TPV array generated a maximum of 26.7 W, demonstrating a conversion efficiency of the IR energy of 12%.


2018 ◽  
Vol 58 (6) ◽  
pp. 346-354
Author(s):  
Ondřej Holčapek ◽  
Pavel Reiterman ◽  
Petr Konvalinka

The main objective of this article is to present the influence of high temperatures on mechanical properties of advanced refractory cement composite reinforced with carbon fibres. The presented material is suitable for industrial applications and can withstand elevated temperatures up to 1000 °C. The action of high temperatures was investigated on two temperature levels 600 °C and 1000 °C and was compared to reference specimens dried at 105 °C. The carbon fibres with flexural strength of 4100MPa were applied in dosage 0.50 %, 0.75% and 1.00% of the total volume. The second investigated modification was mutual ratio between aluminous cement and fine ceramic powder. The influence of high temperatures was investigated by measuring the bulk density, compressive and flexural strength, dynamic modulus of elasticity and fracture energy; all measured on prismatic specimens 40 × 40 × 160 mm. The workability of fresh mixture was limited by the maximum dosage of carbon fibres in 1% of the total volume. Based on the workability and evaluation of residual mechanical properties after temperature loading, the best was found to be the combination of carbon fibres in dosage of 0.75% by volume.


Author(s):  
Bérenger Berthoul ◽  
Alain Batailly ◽  
Mathias Legrand ◽  
Laurent Stainier ◽  
Patrice Cartraud

Abradable materials are widely used as a coating within compressor and turbine stages of modern aircraft engines in order to reduce operating blade-tip/casing clearances and thus maximize the engine energy efficiency. However, recent investigations revealed that the interaction between a blade and these materials may threaten blades structural integrity. Consequently, there is a need for a better understanding of the physical phenomena at play and for an accurate modelling of the interaction in order to predict hazardous events. The cornerstone of related numerical investigations lies in the modelling of the abradable coating removal due to the blade/abradable coating interaction and the associated contact forces along the contact interface. In this context, this article presents a macroscopic model for abradable coating removal accounting for key wear mechanisms including adhesive wear, abrasive wear, micro-rupture wear and machining wear. It is coupled with an in-house numerical strategy for the modelling of full 3D blade/abradable coating interactions within turbomachines and applied to an aircraft engine. Numerical results are compared with respect to existing models and available experimental data. The applicability of the proposed model for 3D interaction simulations is underlined as well as the consistency of the obtained results with experimental observations.


2022 ◽  
Vol 2153 (1) ◽  
pp. 012005
Author(s):  
J P Rojas Suárez ◽  
J A Pabón León ◽  
M S Orjuela Abril

Abstract In the present investigation, an analysis of the fire resistance of the steel-reinforced concrete-filled steel tubular columns with circular cross-sections was carried out by means of numerical simulation. The development of the study was carried out by means of numerical simulation to predict the behavior of the column against fire. The results of the numerical model are validated by comparing the temperature levels obtained through experimental tests. From the results obtained, it is shown that the increase in the contact area between the steel and the concrete reduces the average temperature of the column, which implies a greater resistance to fire. The fire resistance of the columns with the steel profile designs are between 3.4 - 3.6 times higher compared to the column only made of concrete, which is an indication of the excellent performance of the steel-reinforced concrete-filled steel tubular columns with circular cross- sections columns. In general, the methodology proposed in this research allows the analysis of the thermal physical phenomena of the different columns used for the construction of buildings.


2013 ◽  
Vol 159 ◽  
pp. 222-229 ◽  
Author(s):  
Ralf Schmiede ◽  
Eszter Ruprecht ◽  
R. Lutz Eckstein ◽  
Annette Otte ◽  
Tobias W. Donath

Sign in / Sign up

Export Citation Format

Share Document