Effect of Differential Hardness on Static Load Capacity of AISI 52100 Bearing Steel

2021 ◽  
Vol 143 (11) ◽  
Author(s):  
Iqbal Shareef ◽  
Joshua A. Brandes ◽  
Erwin V. Zaretsky

Abstract Static Load Capacity as defined by Palmgren is the load (stress) applied to a bearing that results in an indentation greater than 0.0001 times the diameter of the rolling element. The effect of hardness on the Static Load Capacity of AISI 52100 bearing steel heat treated to six different hardnesses was investigated. Indentation, depth, diameter, volume, and surface area were measured by the white light interferometer. A total of 468 hardness ball–plate combination tests were conducted. For a given plate (race) hardness, the Static Load Capacity was dependent on plate (race) hardness and independent of mating ball hardness from Rockwell C 56 to 66. For plate (race) hardness between Rockwell C 56 and 60, the Static Load Capacity was relatively constant. At Rockwell C hardness between 60 and 61, the Static Load Capacity increased and then rapidly decreased at a plate hardness of Rockwell C 66, below that value obtained at Rockwell C 56. Experimental results obtained for Static Load Capacity using the Palmgren criteria correlated with the finite element analysis for ball-on-plate indentation but not with Hertz theory. The Static Load Capacity based on Yhland for ball bearings was equal to a maximum Hertz stress of 3.71 GPa (538 ksi) at a ball-race conformity of 52%. This value is 12% lower than that specified in the ISO and ANSI/ABMA Bearing Standards. The manufacturers’ Static Load Rating can be reduced from 4% to 7% for ball bearings and from 8% to 25% for roller bearings.

2014 ◽  
Vol 1061-1062 ◽  
pp. 649-652
Author(s):  
Jing Wang ◽  
Li Ying Yang ◽  
Shou Ren Wang ◽  
Guang Ji Xue ◽  
Chang Xiu Zhou

Spherical plain bearing is a sliding bearing have a spherical contact surface,it can bear larger load and automatically adjusted to the self-alignin. TiAl-based composite material is a material that be used to lightweight spherical plain bearing. The Simulation used the finite element software Ansys for the bearing’s static analysis.The material of outer ring using normal bearing steel, one group used the TiAl-based composite materials as the material of the inner ring, Another group the inner ring material is bearing steel 9Cr18. The law of the stress and strain produced by the two groups is consistent,the deformation of the composite materials is bigger under the same load, its elasticity modulus and density is smaller compared to the ordinary bearing steel,the composite material has the advantages of high specific strength especially in the occasions have strict requirements of the bearing weight.


2016 ◽  
Vol 835 ◽  
pp. 643-648
Author(s):  
Jia Fang ◽  
Huang Dong

An improved nonlinear vibration isolator is proposed in this paper. It uses the exact solution derived load-displacement hysteresis curve formula based on energy method to calculate disc spring, combined with the finite element analysis. The static load capacity and dynamic mechanical property of this new type disc spring vibration isolator is validated through the static load tests or fatigue analysis. Compared with the rubber vibration isolator, the conclusion can be found: the new type vibration isolator has wider scope of vibration isolation, and is better in low frequency vibration isolation. These research achievements are of significant importance in the vibration isolation of heavy load and great shock mechanical equipment.


Author(s):  
P. H. Darji ◽  
D. P. Vakharia

Since being originally introduced, cylindrical rolling element bearings have been significantly improved, in terms of their performance and working life. A major objective has been to decrease the Hertz contact stresses at the roller–raceway interfaces, because these are the most heavily stressed areas in a bearing. It has been shown that bearing life is inversely proportional to the stress raised to the ninth power (even higher). Investigators have proposed that under large normal loads a hollow element with a sufficiently thin wall thickness will deflect appreciably more than a solid element of the same size. An improvement in load distribution and thus load capacity may be realized, as well as contact stress is also reduced considerably by using a bearing with hollow rolling elements. Since for hollow rolling element no method is available for the calculation of contact stresses and deformation. The contact stresses in hollow members are often calculated by using the same equations and procedures as for solid specimens. This approach seems to be incorrect. Recently, the Finite Element Analysis (FEA) has been successfully used to evaluate contact problems for the roller bearings. Investigations have been made for hollow rollers in pure normal loading. Different hollowness percentages ranging from 0% to 90% have been analysed in FEA software to find the optimum percentage hollowness which gives minimum stress and finally longest fatigue life.


2013 ◽  
Vol 372 ◽  
pp. 270-272 ◽  
Author(s):  
Kazuaki Nakane ◽  
Katsuyuki Kida ◽  
Takashi Honda ◽  
Koshiro Mizobe ◽  
Edson Costa Santos

JIS SUJ2 (high carbon high strength bearing steel) heat treated by repeated quenching was investigated. The microstructure of the bearing traces was observed after heat treatment by laser confocal microscope. In this paper, by mathematical methods, we try to evaluate quantitatively this change of the structure. Homology is a branch of mathematics that allows quantitative describing characteristics of a figure by replacing the figure with algebra. Applying homology we can express the degree of the connection of the figure. Here we use homology to quantify the change of structures by repeated quenching. Keyword: Homology, Rolling contact fatigue, SUJ2, repeated quenching


2021 ◽  
Vol 328 ◽  
pp. 07003
Author(s):  
Cipto Cipto ◽  
Klemens A. Rahangmetan ◽  
Christian Wely Wullur ◽  
Farid Sariman ◽  
Hariyanto Hariyanto

This study analyzes the maximum load on the shaft construction with a diameter of 12 mm and a length of 581 mm. The shaft is designed as a shaft for cutting meat with a capacity of 5 kg. The analysis was performed using the finite element analysis method included in the Autodesk software. According to mathematical calculations, the shaft is considered safe because the value of the admissible tension τa = 7.380 kg / mm2 is greater than the maximum tension τp 5.62 kg / mm2. Based on the simulation results of the test, the shaft experiences a maximum off-stress of 61.89 MPa, a maximum displacement of 0.07715 mm, , and a safety factor of 3.34 µl so that the shaft is classified as safe for use with a Load capacity of 5 Kg


Materials ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 5440
Author(s):  
Paweł Zmarzły

The paper features the development of multi-dimensional mathematical models used for evaluating the impact of selected factors on the vibration generated by 6304ZZ type rolling ball bearings from three manufacturers in the aspect of the wear process. The bearings were manufactured of AISI 52100 bearing steel. The analyzed factors included the inner and outer raceways’ roundness and waviness deviations, radial clearance and the total curvature ratio. The models were developed for vibration recorded in three frequency ranges: 50–300 Hz, 300–1800 Hz and 1800–10,000 Hz. The paper includes a specification of the principles of operation of innovative measuring systems intended for testing bearing vibration, raceway geometries and radial clearance. Furthermore, it features a specification of particular stages of the multi-dimensional mathematical models’ development and verification. Testing with the purpose of statistical evaluation of the analyzed factors is also presented. The test results and mathematical models indicate that the inner raceway’s waviness deviation had a dominant impact on the vibration examined in all frequencies. The roundness and waviness deviation of bearing raceways made of AISI 52100 steel propagates the bearing wear process.


1975 ◽  
Vol 97 (3) ◽  
pp. 350-355 ◽  
Author(s):  
R. J. Parker ◽  
E. V. Zaretsky

Hot-pressed silicon nitride was evaluated as a rolling-element bearing material. This material has a low specific gravity (41 percent that of bearing steel) and has a potential application as low mass balls for very high-speed ball bearings. The five-ball fatigue tester was used to test 12.7-mm- (0.500-in-) dia silicon nitride balls at maximum Hertz stresses ranging from 4.27 × 109 N/m2 (620,000 psi) to 6.21 × 109 N/m2 (900,000 psi) at a race temperature of 328K (130 deg F). The fatigue life of NC-132 hot-pressed silicon nitride was found to be equal to typical bearing steels and much greater than other ceramic or cermet materials at the same stress levels. A digital computer program was used to predict the fatigue life of 120-mm- bore angular-contact ball bearings containing either steel or silicon nitride balls. The analysis indicates that there is no improvement in the lives of bearings of the same geometry operating at DN values from 2 to 4 million where silicon nitride balls are used in place of steel balls.


2010 ◽  
Vol 163-167 ◽  
pp. 2670-2673
Author(s):  
Yun Liu ◽  
Dong Huang Yan

This study focuses on test loading program and evaluation for pedestrian bridge. On the basis of the finite element analysis, numerical model of Lv River Bridge, which is a steel box pedestrian suspension bridge, is established. Moreover, field static load test is done and the results of tests are compared to the theoretical values. Results show that the measured result fits well with the theoretical result and bridge is in the situation of elastic deformation, and the strength and stiffness satisfy the need of design.


2017 ◽  
Vol 17 (3) ◽  
pp. 222-228 ◽  
Author(s):  
E. Türedi ◽  
M. Yilmaz ◽  
V. Senol

Abstract AISI 52100 bearing steels are commonly used in applications requiring high hardness and abrasion resistance. The bearing steels are working under dynamic loads in service conditions and their toughness properties become important. In order to provide the desired mechanical properties, various heat treatments (austenizing, quenching and tempering) are usually applied. In this study, AISI 52100 bearing steel samples were austenized at 900°C for ½ h and water quenched to room temperature. Then tempering was carried out at 795°C, 400°C and 200°C for ½ h. In order to investigate the effect of heat treatment conditions on wear behavior, dry friction tests were performed according to ASTM G99-05 Standard with a ‘ball-on-disk’ type tribometer. The samples were tested against steel and ceramic counterparts using the parameters of 100 m distance and 30 N load and 0.063 m/s rotational speed. After wear test, the surface characterization was carried out using microscopy. Wear loss values were calculated using a novel optical method on both flat and counterpart specimens.


2011 ◽  
Vol 221 ◽  
pp. 517-521
Author(s):  
Jun Fei Wu ◽  
Wei Gao ◽  
Xiao Chen Zhu

From the parametric modeling, the APDL tool can be used in ANSYS to build the finite element model of rhombic wire wound vessel. Only a small amount of parameters have to be input in order to accomplish the whole process of program development such as constructing model, meshing, creating contact pairs, bringing restrictions and loads to bear on vessels as well as solving and post-processing. It can be easy to use the developed batch program to achieve the finite element analysis of vessels and get the influence of interbedded friction on the load capacity of rhombic wire wound vessel under different working pressures.


Sign in / Sign up

Export Citation Format

Share Document