Investigation of Flow Separation Characteristics in a Pump as Turbines Impeller Under the Best Efficiency Point Condition

2021 ◽  
Vol 143 (6) ◽  
Author(s):  
Tong Lin ◽  
Xiaojun Li ◽  
Zuchao Zhu ◽  
Renhua Xie ◽  
Yanpi Lin

Abstract The impeller, which is the main energy conversion component of a pump as turbine (PAT), is designed for pumping mode, and its internal flow characteristics are quite complicated even at the best efficiency point (BEP) of the turbine mode. This study aims to investigate the flow separation characteristics in a PAT impeller under the BEP condition by numerical method. The hydraulic performance and transient pressure characteristics of PAT predicted numerically were verified through experimentation. The surface friction lines and flow topological structure were applied to diagnose the flow separation at the surface of the blade. The relationship between flow topological structure and vortex in the impeller and static pressure at the blade were analyzed. Analysis results show that the backflow and open flow separation are observed significantly in the leading region and near the shroud of the trailing region of suction side. The passage vortex always appears near the spiral node. The saddle point and spiral node correspond to the peak position of adverse pressure and the lowest position between two peak values of the static pressure of the blade, respectively. The inflow conditions of blade and shape of the trailing edge significantly influence the flow separations in the impeller.

2012 ◽  
Vol 229-231 ◽  
pp. 2454-2458
Author(s):  
Jian Jun Gan ◽  
Jie Gang Mou ◽  
Shui Hua Zheng ◽  
Bo Zhu

Based on CFD simulations and experimental research, this paper studied the mach of impeller outlet and diffuser inlet in stamping and welding centrifugal pump. The influence of area ratio Y of impeller outlet to diffuser inlet on pump internal flow characteristics and performance was studied. Five different area ratio pump models were analyzed. The results indicate that as the area ratio Y= F3/F2 increase, the velocity of fluid in diffuser inlet decreases continuously, the average static pressure of diffuser outlet increases, and the head and efficiency of the pump are risen. When the area ratio increases from Y=1.48 to Y=3.49, the head increases about 3.0% and the efficiency about 2.0%.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Bing Qi ◽  
Desheng Zhang ◽  
Qi Zhang ◽  
Mengcheng Wang ◽  
Ibra Fall

The performance of energy recovery turbine (ERT) directly determines the cost and energy consumption of reverse osmosis desalination. In order to study the performance and loss mechanisms of ERT under different conditions, the external characteristics and the losses of different components were quantitatively analyzed. The loss mechanisms of each component in the turbine were revealed through the comparative analysis of the internal flow field. The results show that the efficiency is 2.2% higher than that at the design speed when turbine runs at n = 22000 r/min. The impeller losses account for more than 67% of the total losses. The impeller loss is mainly observed at the leading edge. The vortex on the pressure side of the leading edge is caused by the impact effect, while the vortex on the suction side of the leading edge is caused by the flow separation. With the increase in the rotating speed, the loss caused by flow separation in impeller decreases obviously. The volute loss is mainly observed near the tongue, which is caused by the flow separation at the tongue. The design of the tongue is very important to the performance of the volute. The turbulent kinetic energy (TKE) and loss decrease with the increase in the rotating speed. The loss in the draft tube is mainly observed at the inlet core. With the increase in the rotating speed, the turbulence pulsation and the radial pressure fluctuation amplitude reduce. Therefore, the turbine can be operated at the design or slightly higher than the design rotating speed under the condition that both the hydraulic condition and the intensity are satisfied, which are conducive to the efficient utilization of energy.


2016 ◽  
Vol 33 (2) ◽  
Author(s):  
C. Senthilkumar ◽  
S. Elangovan ◽  
E. Rathakrishnan

AbstractIn this paper, flow separation of a convergent–divergent (C-D) nozzle is placed downstream of a supersonic flow delivered from Mach 2.0 nozzle is investigated. Static pressure measurements are conducted using pressure taps. The flow characteristics of straight and slanted entry C-D nozzle are investigated for various NPR of Mach 2.0 nozzle. The effect of asymmetry at inlet by providing 15°, 30°, 45° and 57° cut is analyzed. Particular attention is given to the location of the shock within the divergent section of the test nozzle. This location is examined as a function both NPR of Mach 2.0 nozzle and test nozzle inlet angle. Some of the measurements are favorably compared to previously developed theory. A Mach number ratio of 0.81 across the flow separation region was obtained.


Author(s):  
Tim Schneider ◽  
Dragan Kožulović

In a number of recent and former publications, compressor tandem blade configurations show potential to outperform single blade configurations in terms of turning, loss and operating range at high aerodynamic loading levels. However, very little insight is given into the mechanisms of flow breakdown when comparing tandem blades to single blades at large off-design incidence angles. Single blade cascades tend to fail as a result of either pressure side flow separation for high negative incidence or suction side flow separation for high positive incidence, the latter being mostly accompanied by significant increase of underturning. Tandem blade cascades are expected to show a different behavior due to the aerodynamic interaction in the blade overlapping region. Two different tandem blade configurations are examined together with their respective reference single blades, one being a recently designed and optimized tandem blade for high subsonic inlet Mach numbers, which has also been investigated in cascade wind tunnel testing. The other one is a more generic tandem blade based on NACA65 family, designed for medium inlet Mach numbers using current state-of-the-art understanding of tandem design. The mechanisms of flow breakdown are examined using quasi two-dimensional RANS simulations which are validated with test data for one of the aforementioned tandem configurations. A detailed analysis of the flow structure at heavy off-design conditions gives insight into the characteristics of tandem flow breakdown. In particular, the ability of the tandem configuration to extend the operating range to larger positive incidence is described. The shortcomings of the tandem cascade at large negative incidence are also commented. These and further conclusions can be used to improve tandem blade performance at moderate off-design conditions.


2018 ◽  
Vol 10 (7) ◽  
pp. 168781401878952 ◽  
Author(s):  
Jinfeng Zhang ◽  
Guidong Li ◽  
Jieyun Mao ◽  
Shouqi Yuan ◽  
Yefei Qu ◽  
...  

To elucidate the influences of the outlet position of splitter blades on the performance of a low-specific-speed centrifugal pump, two different splitter blade schemes were proposed: one located in the middle of the channel and the other having a deviation angle at the trailing edge of splitter blade toward the suction side of the main blade. Experiments on the model pump with different splitter blade schemes were conducted, and numerical simulations on internal flow characteristics in the impellers were studied by means of the shear stress transport k- ω turbulence model. The results suggest that there is a good agreement between the experimental and numerical results. The splitter blade schemes can effectively optimize the structure of the jet-wake pattern and improve the internal flow states in the impeller channel. In addition, the secondary flow and inlet circulation on the pressure surface of main blade, the flow separation on the suction side of splitter blade, the pressure coefficient distributions on blade surface can achieve an evident amelioration when the trailing edge of splitter blade toward the suction side of the main blade is mounted at an appropriate position.


2021 ◽  
Vol 13 (5) ◽  
pp. 168781402110158
Author(s):  
Yue Ma ◽  
Bing Qian ◽  
Zhiguo Feng ◽  
Xuan Wang ◽  
Guangtai Shi ◽  
...  

Tip clearance between the runner blade tip and shroud in a Kaplan turbine is inevitable, and the tip leakage flow (TLF) and tip leakage vortex (TLV) induced by the tip clearance have a considerable effect on the flow behaviors. To reveal the effect of the tip clearance on the flow characteristics, based on the Reynolds time-averaged Navier-Stokes (N-S) equation and the shear stress transfer (SST) k-ω turbulence model, the three-dimensional turbulence flow in a Kaplan turbine is simulated using ANSYS CFX. Meanwhile, the flow laws in the tip clearance are emphatically analyzed and summarized. Results show with the increase of the tip clearance, the negative pressure region in the blade suction side (SS) middle, the SS near the blade tip and the blade tip becomes more and more obvious. In the meantime, the flow behaviors on the blade pressure side (PS) are relatively stable, and the flow separation on the SS near blade tip merges. The larger the tip clearance is, the more obvious the flow separation phenomenon displays. In addition, the TLV is a spatial three-dimensional spiral structure formed by the entrainment effect of the TLF and main flow, and as the tip clearance increases, the TLV becomes more obvious.


2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Can Luo ◽  
Di Zhang ◽  
Congcong Zhang ◽  
Shuaihao Lei ◽  
Chenzhi Xia ◽  
...  

The rotating stall is a kind of flow phenomenon in the impeller harming the navigation speed of vessels propelled by a waterjet propulsion device when the waterjet propulsion device operates at the small flow rate conditions. The numerical simulated hydraulic performance was compared with experimental results so that the reliability of the CFD method was verified. The grooves are proposed before the inlet of an impeller to suppress the rotating stall. The orthogonal experiment is designed to seek the appropriate values of the parameters such as the length, width, depth, and number of the groove. The results show that the width of groove has the greatest influence on the performance of the device, followed by the number, the depth, and the length. The width, number, depth, and length of the selected groove scheme are 3.10 × 10−2D, 72, 3.10 × 10−2D, and 7.75 × 10−2D, respectively. At the rotating stall conditions, the selected groove scheme is numerically calculated. In contradistinction to the original scheme, it is found that the groove can improve the flow in the impeller and enhance the head of valley point condition, but the efficiency drops due to the increasing local hydraulic loss near the groove. When the groove is installed, the positive slop region on the flow rate-head curve disappears related to the static pressure difference on the blade, especially depending on the static pressure on the suction side. The flow pattern on the span surface of the vortex core is smooth, and then, the head increases. On the contrary, the head decreases. The outcome is beneficial to improve the performance of the waterjet propulsion device and enrich the rotating stall theory.


Author(s):  
H Chen ◽  
N C Baines ◽  
M Abidat

This paper reports a traverse survey of the flow conditions at the exhaust pipe of two mixed-flow turbines. The experimental method is described and the results discussed. It shows that for both turbines, a shroud-hub flow migration might be generated within the blades at higher pressure ratios, which relieves the high blade loading at the shroud, and a flow separation from the suction side of the hub might occur at the lower pressure ratios. The turbine with ‘constant incidence angle’ rotor design suffered from greater swirl loss and a possible internal flow separation than the one with a constant blade inlet angle.


2021 ◽  
Author(s):  
Shunya Takao ◽  
Shinichi Konno ◽  
Shinichiro Ejiri ◽  
Masahiro Miyabe

Abstract The objective of this research is to suppress pressure fluctuation by machining slits to the diffuser vanes and clarify its effect on the diffuser rotating stall from the hydrodynamics point of view. In order to investigate pressure fluctuations due to the diffuser rotating stall, both experiment and CFD (Computational Fluid Dynamics) calculations were conducted. In the experiment, two kinds of pump (one is original and another is with slit vanes) characteristics and time history of static pressure were measured. Then, data processing of wave form were conducted by FFT (Fast Fourier Transform) analysis. The static pressure transducers were mounted at casing-side of diffuser inlet in two passages. On the other hand, the CFD calculations were carried out to investigate the behavior of the diffuser rotating stall and the effect of slit vanes using a commercial CFD software, ANSYS CFX. A positive slope of head-flow characteristics is confirmed around at ϕ = 0.036 in the case of original pump. On the other hand, it has been shifted to lower flow rate, ϕ = 0.020 in the case of slit vanes. The periodic pressure fluctuations were observed for both cases at those flow rate, respectively. Then, it was confirmed that the diffuser rotating stall occurs and the number of cell is one from the co-relation between pressure wave form of two flow passages. The unsteady RANS (Reynolds-averaged Navier-Stokes) calculations were conducted for two kinds of pump. Then the internal flow within the diffuser were compared and the differences were clarified.


Processes ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 1182
Author(s):  
Seung-Jun Kim ◽  
Yong Cho ◽  
Jin-Hyuk Kim

Under low flow-rate conditions, a Francis turbine exhibits precession of a vortex rope with pressure fluctuations in the draft tube. These undesirable flow phenomena can lead to deterioration of the turbine performance as manifested by torque and power output fluctuations. In order to suppress the rope with precession and a swirl component in the tube, the use of anti-swirl fins was investigated in a previous study. However, vortex rope generation still occurred near the cone of the tube. In this study, unsteady-state Reynolds-averaged Navier–Stokes analyses were conducted with a scale-adaptive simulation shear stress transport turbulence model. This model was used to observe the effects of the injection in the draft tube on the unsteady internal flow and pressure phenomena considering both active and passive suppression methods. The air injection affected the generation and suppression of the vortex rope and swirl component depending on the flow rate of the air. In addition, an injection level of 0.5%Q led to a reduction in the maximum unsteady pressure characteristics.


Sign in / Sign up

Export Citation Format

Share Document