Investigation on the Rotational Dynamics of a Timing Belt Drive Including an Oval Driving Pulley

2021 ◽  
Vol 143 (5) ◽  
Author(s):  
Sébastien Passos ◽  
Lionel Manin ◽  
Didier Remond ◽  
Olivier Sauvage ◽  
Laurent Rota ◽  
...  

Abstract Recent developments in timing belt drive for the automotive engine have seen the use of non-circular pulleys. This study presents an experimental and numerical investigation on this type of transmission including an oval pulley. A specific test rig has been designed to enable the identification of the proper effect of an oval pulley on the transmission dynamics. The belt tensions, the speeds, and torques of the driving and driven pulleys were measured and analyzed for three different transmission configurations: (1) circular driving pulley and oval driving pulley without (2) and/or with (3) load torque applied. Analyses were carried out in the time and frequency domains by considering the driving pulley rotation angle as a reference. In parallel a numerical model has been developed, it accounts for the specific motions of the belt seating/unseating points on the oval pulley and its neighboring pulleys. The model considers the variation of lengths for the belt spans adjacent to the oval pulley. This induces variable longitudinal stiffness and influences the transmission dynamics that is predicted versus time and compared with experiments. The phasing angle of the oval driving pulley was adjustable in order to study its influence. With no resistant torque applied, it was found that, for low-speeds, the oval pulley has a pure kinematic effect on the transmission dynamics. When a load torque is applied, the effectiveness of the oval pulley regarding the belt tensions and transmission error fluctuations is verified experimentally for some specific intervals of the phasing angle.

Author(s):  
Lionel Manin ◽  
Didier Remond ◽  
Jean-Philippe Gaborel

The timing belts used for automotive engine are asked to last more and more, and to be less noisy. In this way, it is necessary to simulate the behavior of the engine timing belt drives for optimization, but also to understand it from experimental analysis. The first objective of the work was to analyze experimentally the behavior of a V6 engine timing belt drive in terms of: pulley speeds, belt span tensions, transmission error. The second objective was to compare the measurements with simulations. The engine has four overhead camshafts and 4 valves per cylinder. The timing belt drive is composed of six pulleys, three idlers and an automatic tensioner. The crankshaft and the two first camshaft speeds are measured with optical encoders. Spans tensions are measured by means of strain gauges glued on the idler mounting axes. All the data are simultaneously recorded. Tests have been run from 800 rpm to 6000 rpm. Measured data are first analyzed in the time domain. Some phenomena like, nil span tensions, speeds acyclism and transmission error amplitude, are observed. Then, analyses of the harmonic content of the span tensions, pulley speeds and transmission errors between the crankshaft and the camshafts, are performed versus engine rotation speed. Finally, the tests have been simulated and comparisons are made between numerical and experimental results.


2013 ◽  
Vol 372 ◽  
pp. 507-511
Author(s):  
Hitonobu Koike ◽  
Kenji Kanemasu ◽  
Kiyoto Itakura ◽  
Shota Okazaki ◽  
Masahiro Takamiya ◽  
...  

In this work, wear of reinforced poly-ether-ether-ketone (PEEK) polymer bushes in friction against 7075 aluminium alloy cam plates or titanium crankshafts is investigated in order to establish the application possibilities in transmission parts in humanoid robot joints under high load torque. The PEEK bush wear requires close examination as well as the input axis-output axis transmission error (backlash). Sliding wear tests were performed on bushes under 4000 kgfcm (392 Nm) load torque, while the cam plate oscillated in the humanoid robot leg joint evaluation system. The robot joint using PEEK bush achieved quite small backlash after the fatigue wear test.


2000 ◽  
Vol 123 (1) ◽  
pp. 104-110 ◽  
Author(s):  
Masanori Kagotani ◽  
Hiroyuki Ueda ◽  
Tomio Koyama

Helical timing belts have been developed in order to reduce the noise that occurs when conventional timing belts are driven. Helical timing belts are characterized by synchronous rotation. Although several studies have been performed to clarify the noise characteristics and belt life of helical timing belts, the transmission error of these belts remains unclear. In the present study, the transmission error having a period of one pitch of the pulley was investigated both theoretically and experimentally for helical timing belt drives. Experimental conditions were such that the transmission force acts on the helical timing belts under quasi-static conditions and the belt incurs belt climbing at the beginning of meshing and at the end of meshing. Experimental results obtained for the transmission error agreed closely with the computed results. The computed results revealed that helical timing belts can be analyzed as a set of very narrow belts for which the helix angle is zero. The transmission error was found to decrease when the helix angle or the belt width increase within a range defined such that the face advance is less than one belt pitch. In addition, there exists an appropriate installation tension that reduces the transmission error.


2014 ◽  
Vol 800-801 ◽  
pp. 672-677
Author(s):  
Jian Hua Guo ◽  
Hong Yuan Jiang ◽  
Yi Zhen Wu ◽  
Wen Ya Chu ◽  
Qing Xin Meng

The meshing impact noise caused by the gradually engagement between double helical synchronous belt and the pulley was reduced due to its spiral angle effect. Therefore, double helical synchronous belt transmission receives much concern with its excellent characteristics of de-noising, low transmission error and high carrying capacity. The profiles of synchronous belt and belt pulley were studied based on conjugate-curvature high degree contact meshing theory under the circumstance that the pitch of belt and belt pulley are identical. The higher contact strength of the belt teeth and a smaller clearance in the contact point adjacent area were ensured with Hertz contact theory as the synchronous belt is in contact with pulley. And then a conjugated arc tooth profile with two-step contact and three-step adjacent gap infinitesimal was proposed based on the simple easy to processing method, which was adopted as main parameters for double synchronous belt and pulley’s normal teeth profile. The three-dimensional transmission model was built and the static nonlinear contact analysis was done with finite element software ANSYS. Finally, the noise experiment was conducted on the high speed test bench to compare the noise reduction effect between double helical synchronous belt and straight tooth timing belt with the identical end face profile. The simulation and experiment result show that the double helical synchronous belt transmission can reduce noise level by 11dB approximately compared with straight tooth timing belt transmission.


1997 ◽  
Vol 119 (2) ◽  
pp. 162-168 ◽  
Author(s):  
R. S. Beikmann ◽  
N. C. Perkins ◽  
A. G. Ulsoy

Serpentine belt drive systems with spring-loaded tensioners are now widely used in automotive engine accessory drive design. The steady state tension in each belt span is a major factor affecting belt slip and vibration. These tensions are determined by the accessory loads, the accessory drive geometry, and the tensioner properties. This paper focuses on the design parameters that determine how effectively the tensioner maintains a constant tractive belt tension, despite belt stretch due to accessory loads and belt speed. A nonlinear model predicting the operating state of the belt/tensioner system is derived, and solved using (1) numerical, and (2) approximate, closed-form methods. Inspection of the closed-form solution reveals a single design parameter, referred to as the “tensioner constant,” that measures the effectiveness of the tensioner. Tension measurements on an experimental drive system confirm the theoretical predictions.


2017 ◽  
Vol 139 (12) ◽  
Author(s):  
Masanori Kagotani ◽  
Hiroyuki Ueda

In synchronous belt drives, it is generally difficult to eliminate pulley eccentricity, because the pulley teeth and shaft hole are produced separately and the pulley is installed on an eccentric shaft. This eccentricity affects the accuracy of rotation transmission, so that the belt tension changes during a single rotation of the pulley. This in turn affects the occurrence of resonance in the spans. In the present study, the transmission error in a synchronous belt drive with an eccentric pulley in the absence of a transmitted load was experimentally investigated for the case in which the spans undergo first-mode transverse vibration due to resonance. The transmission error was found to have a component with a period equal to the span displacement, in addition to a component with a period of half the span displacement. During a single rotation of the pulley, the magnitude of the transmission error increased, and its frequency decreased, with decreasing belt tension. The transmission error exhibited the large value when two frequency conditions were satisfied: one was that the meshing frequency was within the range of span frequency variations due to the eccentricity, and the other was that the minimum span frequency was close to an integer multiple of the pulley rotation frequency. Even if both of these conditions occurred, if the range of span frequency variations due to the eccentricity was larger than 13 Hz, the transmission error could be eliminated by adjusting the belt tension, so that the average span frequency corresponded to the meshing frequency.


2008 ◽  
Vol 75 (4) ◽  
Author(s):  
Guilhem Michon ◽  
Lionel Manin ◽  
Didier Remond ◽  
Regis Dufour ◽  
Robert G. Parker

This paper experimentally investigates the parametric instability of an industrial axially moving belt subjected to multifrequency excitation. Based on the equations of motion, an analytical perturbation analysis is achieved to identify instabilities. The second part deals with an experimental setup that subjects a moving belt to multifrequency parametric excitation. A data acquisition technique using optical encoders and based on the angular sampling method is used with success for the first time on a nonsynchronous belt transmission. Transmission error between pulleys, pulley/belt slip, and tension fluctuation are deduced from pulley rotation angle measurements. Experimental results validate the theoretical analysis. Of particular note is that the instability regions are shifted to lower frequencies than the classical ones due to the multifrequency excitation. This experiment also demonstrates nonuniform belt characteristics (longitudinal stiffness and friction coefficient) along the belt length that are unexpected sources of excitation. These variations are shown to be sources of parametric instability.


1996 ◽  
Vol 43 (11) ◽  
pp. 1328-1332
Author(s):  
Katsuaki Sato ◽  
Tsutomu Saka ◽  
Jun Sakai ◽  
Yoshiaki Takagi

Sign in / Sign up

Export Citation Format

Share Document