Nicotine Affects Murine Aortic Stiffness and Fatigue Response During Supraphysiological Cycling

Author(s):  
Elizabeth Ho ◽  
Joscha Mulorz ◽  
Jason Wong ◽  
Markus U. Wagenhäuser ◽  
Philip Tsao ◽  
...  

Abstract Nicotine exposure is a major risk factor for several cardiovascular diseases. Although the deleterious effects of nicotine on aortic remodeling processes have been studied to some extent, the biophysical consequences are not fully elucidated. In this investigation, we applied quasi-static and dynamic loading to quantify ways in which exposure to nicotine affects mechanical behavior of murine arterial tissue. Segments of thoracic aortas from C57BL/6 mice exposed to 25 mg/kg/day of subcutaneous nicotine for 28 days were subjected to uniaxial tensile loading in an open-circumferential configuration. Comparing aorta segments from nicotine-treated mice relative to an equal number of control counterparts, stiffness in the circumferential direction was nearly two-fold higher (377 kPa ± 165 kPa vs. 191 kPa ± 65 kPa, n = 5, p = 0.03) at 50% strain. Using a degradative power-law fit to fatigue data at supraphysiological loading, we observed that nicotine-treated aortas exhibited significantly higher peak stress, greater loss of tension, and wider oscillation band than control aortas (p = 0.01 for all three variables). Compared to simple stress relaxation tests, fatigue cycling is shown to be more sensitive and versatile in discerning nicotine-induced changes in mechanical behavior over many cycles. Supraphysiological fatigue cycling thus may have broader potential to reveal subtle changes in vascular mechanics caused by other exogenous toxins or pathological conditions.

Author(s):  
A. S. Atamashkin ◽  
E. Yu. Priymak ◽  
N. V. Firsova

The paper presents an analysis of the mechanical behavior of friction samples of welded joints from steels 30G2 (36 Mn 5) and 40 KhN (40Ni Cr 6), made by rotary friction welding (RFW). The influence of various temperature conditions of postweld tempering on the mechanical properties and deformation behavior during uniaxial tensile testing is analyzed. Vulnerabilities where crack nucleation and propagation occurred in specimens with a welded joint were identified. It was found that with this combination of steels, postweld tempering of the welded joint contributes to a decrease in the integral strength characteristics under conditions of static tension along with a significant decrease in the relative longitudinal deformation of the tested samples.


Author(s):  
M. Carraturo ◽  
G. Alaimo ◽  
S. Marconi ◽  
E. Negrello ◽  
E. Sgambitterra ◽  
...  

AbstractAdditive manufacturing (AM), and in particular selective laser melting (SLM) technology, allows to produce structural components made of lattice structures. These kinds of structures have received a lot of research attention over recent years due to their capacity to generate easy-to-manufacture and lightweight components with enhanced mechanical properties. Despite a large amount of work available in the literature, the prediction of the mechanical behavior of lattice structures is still an open issue for researchers. Numerical simulations can help to better understand the mechanical behavior of such a kind of structure without undergoing long and expensive experimental campaigns. In this work, we compare numerical and experimental results of a uniaxial tensile test for stainless steel 316L octet-truss lattice specimen. Numerical simulations are based on both the nominal as-designed geometry and the as-build geometry obtained through the analysis of µ-CT images. We find that the use of the as-build geometry is fundamental for an accurate prediction of the mechanical behavior of lattice structures.


2002 ◽  
Vol 62 (1) ◽  
pp. 73-81 ◽  
Author(s):  
J. M. García Páez ◽  
A. Carrera ◽  
E. Jorge Herrero ◽  
I. Millán ◽  
A. Rocha ◽  
...  

Metals ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 778 ◽  
Author(s):  
Omid Hajizad ◽  
Ankit Kumar ◽  
Zili Li ◽  
Roumen H. Petrov ◽  
Jilt Sietsma ◽  
...  

Wheel–rail contact creates high stresses in both rails and wheels, which can lead to different damage, such as plastic deformation, wear and rolling contact fatigue (RCF). It is important to use high-quality steels that are resistant to these damages. Mechanical properties and failure of steels are determined by various microstructural features, such as grain size, phase fraction, as well as spatial distribution and morphology of these phases in the microstructure. To quantify the mechanical behavior of bainitic rail steels, uniaxial tensile experiments and hardness measurements were performed. In order to characterize the influence of microstructure on the mechanical behavior, various microscopy techniques, such as light optical microscopy (LOM), scanning electron microscopy (SEM) and electron backscatter diffraction (EBSD), were used. Three bainitic grades industrially known as B360, B1400 plus and Cr-Bainitic together with commonly used R350HT pearlitic grade were studied. Influence of isothermal bainitic heat treatment on the microstructure and mechanical properties of the bainitic grades was investigated and compared with B360, B1400 plus, Cr-Bainitic and R350HT in as-received (AR) condition from the industry. The results show that the carbide-free bainitic steel (B360) after an isothermal heat treatment offers the best mechanical performance among these steels due to a very fine, carbide-free bainitic microstructure consisting of bainitic ferrite and retained austenite laths.


1970 ◽  
Vol 37 (3) ◽  
pp. 765-770 ◽  
Author(s):  
A. B. Schultz

The mechanical behavior of metals subjected to uniaxial tensile impact at elevated temperatures is reported. Tests were conducted on annealed 1100 aluminum at 200, 350, 550, and 800 deg F; annealed 2024 aluminum at 200, 450, and 600 deg; and annealed C1010 steel at 430, 700, 1050, and 1400 deg F. The materials exhibit a wide range of dynamic behavior, including some in which the stress required to produce a given level of strain is significantly lowered by dynamic loading. The ratios of the dynamic ultimate stresses to the static are found to range from 0.71–6.0.


2009 ◽  
Vol 131 (11) ◽  
Author(s):  
Carolyn J. Sparrey ◽  
Tony M. Keaveny

The compression behavior of spinal cord tissue is important for understanding spinal cord injury mechanics but has not yet been established. Characterizing compression behavior assumes precise specimen geometry; however, preparing test specimens of spinal cord tissue is complicated by the extreme compliance of the tissue. The objectives of this study were to determine the effect of flash freezing on both specimen preparation and mechanical response and to quantify the effect of small deviations in specimen geometry on mechanical behavior. Specimens of porcine spinal cord white matter were harvested immediately following sacrifice. The tissue was divided into two groups: partially frozen specimens were flash frozen (60 s at −80°C) prior to cutting, while fresh specimens were kept at room temperature. Specimens were tested in unconfined compression at strain rates of 0.05 s−1 and 5.0 s−1 to 40% strain. Parametric finite element analyses were used to investigate the effect of specimen face angle, cross section, and interface friction on the mechanical response. Flash freezing did not affect the mean mechanical behavior of the tissue but did reduce the variability in the response across specimens (p<0.05). Freezing also reduced variability in the specimen geometry. Variations in specimen face angle (0–10 deg) resulted in a 34% coefficient of variation and a 60% underestimation of peak stress. The effect of geometry on variation and error was greater than that of interface friction. Taken together, these findings demonstrate the advantages of flash freezing in biomechanical studies of spine cord tissue.


1995 ◽  
Vol 117 (1) ◽  
pp. 86-93 ◽  
Author(s):  
T. Kang ◽  
J. Resar ◽  
J. D. Humphrey

We performed in vitro pressure-diameter and axial force-length experiments on nondiseased, passive bovine coronary arteries subjected to bath temperatures from 21 to 80° C for 90 s to 4 hr. Over the strain ranges studied, we found that: (a) vessel behavior remained the same over 20 min of testing at 21 to 55° C, (b) vessels stiffened multiaxially after 5 min of exposure to 60° C and continued to stiffen over 20 min of testing, (c) dramatic multiaxial vessel stiffening and shrinkage occurred after 90 s of exposure to 70 and 80° C, and (d) heat-induced changes at 70° C depended on the intraluminal pressure during heating. Thus, passive bovine coronary arteries exhibit a complex thermomechanical behavior that depends on the temperature, duration of thermal exposure, and the mechanical loads applied during heating.


2017 ◽  
Vol 18 (6) ◽  
pp. 522-529 ◽  
Author(s):  
Francesca Di Puccio ◽  
Giuseppe Gallone ◽  
Andrea Baù ◽  
Emanuele M. Calabrò ◽  
Simona Mainardi ◽  
...  

Introduction In a previous paper, the authors investigated the mechanical behavior of several commercial polyurethane peripherally inserted central venous catheters (PICCs) in their ‘brand new’ condition. The present study represents a second step of the research activity and aims to investigate possible modifications of the PICC mechanical response, induced by long-term conservation in in vivo-like conditions, particularly when used to introduce oncologic drugs. Methods Eight 5 Fr single-lumen catheters from as many different vendors, were examined. Several specimens were cut from each of them and kept in a bath at 37°C for 1, 2, 3 and 6 months. Two fluids were used to simulate in vivo-like conditions, i.e. ethanol and Ringer-lactate solutions, the first being chosen in order to reproduce a typical chemical environment of oncologic drugs. The test plan included swelling analyses, uniaxial tensile tests and dynamic mechanical thermal analysis (DMTA). Results and conclusions All tested samples were chemically and mechanically stable in the studied conditions, as no significant weight variation was observed even after six months of immersion in ethanol solution. Uniaxial tensile tests confirmed such a response. For each PICC, very similar curves were obtained from samples tested after different immersion durations in the two fluid solutions, particularly for strains lower than 10%.


Sign in / Sign up

Export Citation Format

Share Document