Global Self-Optimizing Control with Data-Driven Optimal Selection of Controlled Variables with Application to Chiller Plant

Author(s):  
Zhongfan Zhao ◽  
Yaoyu Li ◽  
Timothy Salsbury ◽  
John House

Abstract In this paper, we propose a global self-optimizing control (SOC) approach, where nonlinear dynamic model is obtained from historical data of plant operation via the framework of sparse identification for nonlinear dynamics (SINDy) combined with regularized regression. With the nonlinear static input-output map obtained by forcing steady-state operation, the globally optimal solutions of controlled variables can be found by tracking the necessary conditions of optimality (NCO) in an analytical fashion. After validation with a numerical example, the proposed method is evaluated using a Modelica-based dynamic model of a chilled water plant. The economic objective for chiller plant operation is to minimize the total power of compressor, condenser water pump and cooling tower fan, while the cooling tower fan speed and condenser water mass flow rate are used as manipulated inputs. The operating data are generated based on realistic ambient and load conditions and a best-practice rule-based strategy for chiller operation. The control structure with the SOC method yields a total power consumption close to the global optimum and substantially smaller than that of a best-practice rule-based chiller plant control strategy. The proposed method promises a global SOC solution using dynamic operation data, for cost-effective and adaptive control structure optimization.

2011 ◽  
Vol 314-316 ◽  
pp. 1492-1501
Author(s):  
Ching Liang Chen ◽  
Yung Chung Chang

Recently, the semiconductor manufacturing industry has exhibited not only fast growth, but intense power consumption. Consequently, reducing power consumption is critical for running reliability. A view of literature reveals that the power consumption of facility system is 56.6 % in the fabs. Among all facility systems, chiller plants are the largest energy users, consuming 27.2 % of the total power consumption. Therefore, saving power consumption for chiller plants involves a considerable economic benefit. In addition, cooling the water temperature further improves the efficiency of chillers. Hence, this report analyzes the optimal temperature between the chiller and cooling tower. Currently, controlling the chiller and cooling tower are separate processes, though, in fact, they should not be. This is because the water cooling temperature affects the efficiency of the chiller. Each reduced degree of the chiller condenser temperature reduces the electrical power by approximately 2 % in the cooling tower, in contrast to the chiller. Therefore, the optimal water cooling water temperature must be analyzed. The analysis method in this report is linear regression. First, determine the equations of power consumption for the chiller and cooling tower with variables representing the water cooling temperature, water supply temperature of the chiller, and outdoor loading and wet-bulb temperatures. Second, add the coefficient of the same variable to obtain the total power consumption equation for the chiller and cooling tower. The result shows the relationships of power consumption with water cooling temperature under identical conditions of the water cooling temperature, water supply temperature of chiller, and outdoor loading and wet-bulb temperatures. Finally, use the differential method to determine the optimal water cooling temperature.


Author(s):  
Baojie Mu ◽  
Yaoyu Li ◽  
Timothy I. Salsbury ◽  
John M. House

Chilled-water plants with multiple chillers are the backbone of ventilation and air conditioning (VAC) systems for commercial buildings. A penalty function based multivariate extremum seeking control (ESC) strategy is proposed in this paper for maximizing the energy efficiency in real time for a variable primary flow (VPF) chilled-water plant with parallel chillers. The proposed ESC algorithm takes the total power consumption (chiller compressors + cooling tower fan + condenser water pumps + penalty terms if inputs saturation occurs) as feedback, and tower fan air flow, condenser water flows and evaporator leaving chilled-water temperature setpoint as plant inputs (ESC outputs). A band-pass filter array is used in place of the conventional high-pass filter at the plant output so as to reduce the cross-channel interference. Chiller sequencing is also enabled with input saturation related signals. A Modelica based dynamic simulation model is developed for a chilled-water plant with two parallel chillers, one cooling tower, one air-handling unit and one zone. Simulation results under several testing conditions validate the effectiveness of the proposed model-free control strategy, as well as the significant energy saving.


2009 ◽  
Vol 11 (2) ◽  
pp. 163-168
Author(s):  
Long LV ◽  
Zhenfang HUANG ◽  
Jiang WU

Drones ◽  
2020 ◽  
Vol 4 (4) ◽  
pp. 71
Author(s):  
Luz M. Sanchez-Rivera ◽  
Rogelio Lozano ◽  
Alfredo Arias-Montano

Hybrid Unmanned Aerial Vehicles (H-UAVs) are currently a very interesting field of research in the modern scientific community due to their ability to perform Vertical Take-Off and Landing (VTOL) and Conventional Take-Off and Landing (CTOL). This paper focuses on the Dual Tilt-wing UAV, a vehicle capable of performing both flight modes (VTOL and CTOL). The UAV complete dynamic model is obtained using the Newton–Euler formulation, which includes aerodynamic effects, as the drag and lift forces of the wings, which are a function of airstream generated by the rotors, the cruise speed, tilt-wing angle and angle of attack. The airstream velocity generated by the rotors is studied in a test bench. The projected area on the UAV wing that is affected by the airstream generated by the rotors is specified and 3D aerodynamic analysis is performed for this region. In addition, aerodynamic coefficients of the UAV in VTOL mode are calculated by using Computational Fluid Dynamics method (CFD) and are embedded into the nonlinear dynamic model. To validate the complete dynamic model, PD controllers are adopted for altitude and attitude control of the vehicle in VTOL mode, the controllers are simulated and implemented in the vehicle for indoor and outdoor flight experiments.


2021 ◽  
Vol 11 (15) ◽  
pp. 6749
Author(s):  
Zhifeng Xie ◽  
Ao Wang ◽  
Zhuoran Liu

The cooling system is an important subsystem of an internal combustion engine, which plays a vital role in the engine’s dynamical characteristic, the fuel economy, and emission output performance at each speed and load. This paper proposes an economical and precise model for an electric cooling system, including the modeling of engine heat rejection, water jacket temperature, and other parts of the cooling system. This model ensures that the engine operates precisely at the designated temperature and the total power consumption of the cooling system takes the minimum value at some power proportion of fan and pump. Speed maps for the cooling fan and pump at different speeds and loads of engine are predicted, which can be stored in the electronic control unit (ECU). This model was validated on a single-cylinder diesel engine, called the DK32. Furthermore, it was used to tune the temperature of the water jacket precisely. The results show that in the common use case, the electric cooling system can save the power of 255 W in contrast with the mechanical cooling system, which is about 1.9% of the engine’s power output. In addition, the validation results of the DK32 engine meet the non-road mobile machinery China-IV emission standards.


Author(s):  
Zhihua Niu ◽  
Sun Jin ◽  
Rongrong Wang ◽  
Yansong Zhang

Dynamic analysis is an essential task in the geometry design of suspension systems. Whereas the dynamic simulation based on numerical software like Adams is quite slowly and the existing analytical models of the nonlinear suspension geometry are mostly based on small displacement hypothesis, this paper aims to propose a whole-range dynamic model with high computational efficiency for planar double wishbone suspensions and further achieve the fast optimal design of suspension geometry. Selection of the new generalized coordinate and explicit solutions of the basic four-bar mechanism dramatically reduce the complexity of suspension geometry representation and provide analytical solutions for all of the time varying dimensions. By this means, the running speed and computational accuracy of the new model are guaranteed simultaneously. Furthermore, an original Matlab/Simulink implementation is given to maintain the geometric nonlinearity in the solving process of dynamic differential equations. After verifying its accuracy with an ADAMS prototype, the presented whole-range model is used in the vast-parameter optimization of suspension geometry. Since both kinematic and dynamic performances are evaluated in the objective function, the optimization is qualified to give a comprehensive suggestion to the design of suspension geometry.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3713
Author(s):  
Soyeon Lee ◽  
Bohyeok Jeong ◽  
Keunyeol Park ◽  
Minkyu Song ◽  
Soo Youn Kim

This paper presents a CMOS image sensor (CIS) with built-in lane detection computing circuits for automotive applications. We propose on-CIS processing with an edge detection mask used in the readout circuit of the conventional CIS structure for high-speed lane detection. Furthermore, the edge detection mask can detect the edges of slanting lanes to improve accuracy. A prototype of the proposed CIS was fabricated using a 110 nm CIS process. It has an image resolution of 160 (H) × 120 (V) and a frame rate of 113, and it occupies an area of 5900 μm × 5240 μm. A comparison of its lane detection accuracy with that of existing edge detection algorithms shows that it achieves an acceptable accuracy. Moreover, the total power consumption of the proposed CIS is 9.7 mW at pixel, analog, and digital supply voltages of 3.3, 3.3, and 1.5 V, respectively.


Sign in / Sign up

Export Citation Format

Share Document