Development of Topology Optimized Bending-Twisting Soft Finger

2021 ◽  
pp. 1-10
Author(s):  
Zhili Chen ◽  
Hamed Rahimi ◽  
Chee Meng Chew

Abstract This paper proposed a systematic framework to automatically design and fabricate optimized soft robotic fingers. The soft finger is composed of a soft silicone structure with inner air chambers and a harder outer layer, which are fabricated by molding process and 3D printing, respectively. The softer layer is utilized for actuation while the supportive hard structure is used to impose constraints. The framework applies a topology optimization approach based on RAMP method to obtain an optimal design of the outer layer of the soft fingers. Two basic motion primitives (bending and twisting) of the soft finger were explored. A multi-segmented soft bending finger and a soft twisting finger were designed and fabricated through the proposed framework. This work also explored the combination of bending and twisting primitives by developing a combined bending-twisting soft finger. The soft fingers were characterized by free and blocked movement tests. The experiments showed that the triple-segmented soft finger can achieve a maximum of 50.5 no-load bending under the actuation pressure of 53 kPa. The blocked movement test on the multi-segmented soft actuating finger showed that this finger could generate up to a maximum of 0.63 N force under 57 kPa actuation pressure in 7 seconds of inflating time. The developed twisting soft finger was shown to achieve tip rotation of up to 219 degrees under 29 kPa actuation pressure. Finally, the potential capability of the bending-twisting soft fingers was verified through applications like screwing and object grasping.

2013 ◽  
Vol 785-786 ◽  
pp. 1258-1261
Author(s):  
In Pyo Cha ◽  
Hee Jae Shin ◽  
Neung Gu Lee ◽  
Lee Ku Kwac ◽  
Hong Gun Kim

Topology optimization and shape optimization of structural optimization techniques are applied to transport skate the lightweight. Skate properties by varying the design variables and minimize the maximum stress and strain in the normal operation, while reducing the volume of the objective function of optimal design and Skate the static strength of the constraints that should not degrade compared to the performance of the initial model. The skates were used in this study consists of the main frame, sub frame, roll, pin main frame only structural analysis and optimal design was performed using the finite element method. Simplified initial model set design area and it compared to SM45C, AA7075, CFRP, GFRP was using the topology optimization. Strength does not degrade compared to the initial model, decreased volume while minimizing the stress and strain results, the optimum design was achieved efficient lightweight.


Author(s):  
Ashraf O. Nassef

Auxetic structures are ones, which exhibit an in-plane negative Poisson ratio behavior. Such structures can be obtained by specially designed honeycombs or by specially designed composites. The design of such honeycombs and composites has been tackled using a combination of optimization and finite elements analysis. Since, there is a tradeoff between the Poisson ratio of such structures and their elastic modulus, it might not be possible to attain a desired value for both properties simultaneously. The presented work approaches the problem using evolutionary multiobjective optimization to produce several designs rather than one. The algorithm provides the designs that lie on the tradeoff frontier between both properties.


Author(s):  
Martin Noack ◽  
Arnold Kühhorn ◽  
Markus Kober ◽  
Matthias Firl

AbstractThis paper presents a new FE-based stress-related topology optimization approach for finding bending governed flexible designs. Thereby, the knowledge about an output displacement or force as well as the detailed mounting position is not necessary for the application. The newly developed objective function makes use of the varying stress distribution in the cross section of flexible structures. Hence, each element of the design space must be evaluated with respect to its stress state. Therefore, the method prefers elements experiencing a bending or shear load over elements which are mainly subjected to membrane stresses. In order to determine the stress state of the elements, we use the principal stresses at the Gauss points. For demonstrating the feasibility of the new topology optimization approach, three academic examples are presented and discussed. As a result, the developed sensitivity-based algorithm is able to find usable flexible design concepts with a nearly discrete 0 − 1 density distribution for these examples.


2021 ◽  
Author(s):  
Premanand Sathyanarayanamurthi ◽  
ARUNKUMAR GOPAL

Abstract The Topology Optimization design invariably shall be used in various applications like Aerojet designs, Aircraft Engineering designs and innovative systems for improving the efficiency of structure. The paper emphasizes more on general Topology Optimization design for a rectangular domain. The domain numerically analyzed with defined geometry setting and defined boundary conditions for finding the Stress and displacement. In this Topology Optimization Design synthesis, the result is suitable volume and mass reduction in the Aerojet application parts which further can be taken for Prototype development in 3D printing and experimentally test with safety characteristics and compares Objective functions chosen for design and development. The design can be used for other various automotive and aerospace devices based on deformation level and application of external forces. The Final destination of this design and development ends with passing Fatigue Endurance test cycle test pass condition in Aerojet and automotive vehicles in static and dynamic state.


2021 ◽  
Vol 11 (22) ◽  
pp. 10518
Author(s):  
Gil-Eon Jeong

There has been an increasing demand for the design of an optimum topological layout in several engineering fields for a simple part, along with a system that considers the relative behaviors between adjacent parts. This paper presents a method of designing an optimum topological layout to achieve a linear dynamic impact and frictionless contact conditions in which relative behaviors can be observed between adjacent deformable parts. The solid isotropic method with penalization (SIMP) method is used with an appropriate filtering scheme to obtain an optimum topological layout. The condensed mortar method is used to handle the non-matching interface, which inevitably occurs in the impact and contact regions, since it can easily apply the existing well-known topology optimization approach even in the presence of a non-matching interface. The validity of the proposed method is verified through a numerical example. In the future, the proposed optimization approach will be applied to more general and highly nonlinear non-matching interface problems, such as friction contact and multi-physics problems.


2016 ◽  
Vol 715 ◽  
pp. 174-179 ◽  
Author(s):  
Chih Hsing Liu ◽  
Ying Chia Huang ◽  
Chen Hua Chiu ◽  
Yu Cheng Lai ◽  
Tzu Yang Pai

This paper presents the analysis methods for design of automotive bumper covers. The bumper covers are plastic structures attached to the front and rear ends of an automobile and are expected to absorb energy in a minor collision. One requirement in design of the bumper covers is to minimize the bumper deflection within a limited range under specific loadings at specific locations based on the design guideline. To investigate the stiffness performance under various loading conditions, a numerical model based on the explicit dynamic finite element analysis (FEA) using the commercial FEA solver, LS-DYNA, is developed to analyze the design. The experimental tests are also carried out to verify the numerical model. The thickness of the bumper cover is a design variable which usually varies from 3 to 4 mm depending on locations. To improve the stiffness of the bumper, an optimal design for the bumper under a pre-defined loading condition is identified by using the topology optimization approach, which is an optimal design method to obtain the optimal layout of an initial design domain under specific boundary conditions. The outcome of this study provides an efficient and cost-effective method to predict and improve the design of automotive bumper covers.


Sign in / Sign up

Export Citation Format

Share Document