Measurements of Turbulent Transport in a Square Channel with One Ribbed Wall

Author(s):  
Sebastian Ruck ◽  
Frederik Arbeiter

Abstract The velocity field of the fully developed turbulent flow in a one-sided ribbed square channel (rib-height-to-channel-height ratio of k/h = 0.0667, rib-pitch-to-rib-height ratio of p/k = 9) were measured at Reynolds numbers (based on the channel height h and the mean bulk velocity uB) of Reh = 50 000 and 100 000 by means of Laser-Doppler-Anemometry (LDA). Triple velocity correlations differed slightly between both Reynolds numbers when normalized by the bulk velocity and the channel height, similarly to the first- and second-order statistical moments of the velocity. Their near-wall behavior reflected the crucial role of turbulent transport near the rib crest and within the separated shear layer. Sweep events occurred with the elongated flow structures of the flapping shear layer and gained in importance towards the channel bottom wall, while strong ejection events near the rib leading and trailing edges coincided with flow structures bursting away from the wall. Despite the predominant occurrence of sweep events close to the ribbed wall within the inter-rib spacing, ejection events contributed with higher intensity to the Reynolds shear stress. Ejection and sweep events and their underlying transport phenomena contributing to the Reynolds shear stress were almost Reynolds number-insensitive in the resolved flow range. The invariance to the Reynolds number can be of benefit for the use of scale-resolving simulation methods in the design process of rib structures for heat exchange applications.

2001 ◽  
Vol 448 ◽  
pp. 53-80 ◽  
Author(s):  
Z. LIU ◽  
R. J. ADRIAN ◽  
T. J. HANRATTY

Turbulent flow in a rectangular channel is investigated to determine the scale and pattern of the eddies that contribute most to the total turbulent kinetic energy and the Reynolds shear stress. Instantaneous, two-dimensional particle image velocimeter measurements in the streamwise-wall-normal plane at Reynolds numbers Reh = 5378 and 29 935 are used to form two-point spatial correlation functions, from which the proper orthogonal modes are determined. Large-scale motions – having length scales of the order of the channel width and represented by a small set of low-order eigenmodes – contain a large fraction of the kinetic energy of the streamwise velocity component and a small fraction of the kinetic energy of the wall-normal velocities. Surprisingly, the set of large-scale modes that contains half of the total turbulent kinetic energy in the channel, also contains two-thirds to three-quarters of the total Reynolds shear stress in the outer region. Thus, it is the large-scale motions, rather than the main turbulent motions, that dominate turbulent transport in all parts of the channel except the buffer layer. Samples of the large-scale structures associated with the dominant eigenfunctions are found by projecting individual realizations onto the dominant modes. In the streamwise wall-normal plane their patterns often consist of an inclined region of second quadrant vectors separated from an upstream region of fourth quadrant vectors by a stagnation point/shear layer. The inclined Q4/shear layer/Q2 region of the largest motions extends beyond the centreline of the channel and lies under a region of fluid that rotates about the spanwise direction. This pattern is very similar to the signature of a hairpin vortex. Reynolds number similarity of the large structures is demonstrated, approximately, by comparing the two-dimensional correlation coefficients and the eigenvalues of the different modes at the two Reynolds numbers.


2012 ◽  
Vol 710 ◽  
pp. 5-34 ◽  
Author(s):  
Philipp Schlatter ◽  
Ramis Örlü

AbstractA recent assessment of available direct numerical simulation (DNS) data from turbulent boundary layer flows (Schlatter & Örlü,J. Fluid Mech., vol. 659, 2010, pp. 116–126) showed surprisingly large differences not only in the skin friction coefficient or shape factor, but also in their predictions of mean and fluctuation profiles far into the sublayer. While such differences are expected at very low Reynolds numbers and/or the immediate vicinity of the inflow or tripping region, it remains unclear whether inflow and tripping effects explain the differences observed even at moderate Reynolds numbers. This question is systematically addressed by re-simulating the DNS of a zero-pressure-gradient turbulent boundary layer flow by Schlatteret al. (Phys. Fluids, vol. 21, 2009, art. 051702). The previous DNS serves as the baseline simulation, and the new DNS with a range of physically different inflow conditions and tripping effects are carefully compared. The downstream evolution of integral quantities as well as mean and fluctuation profiles is analysed, and the results show that different inflow conditions and tripping effects do indeed explain most of the differences observed when comparing available DNS at low Reynolds number. It is further found that, if transition is initiated inside the boundary layer at a low enough Reynolds number (based on the momentum-loss thickness)${\mathit{Re}}_{\theta } \lt 300$, all quantities agree well for both inner and outer layer for${\mathit{Re}}_{\theta } \gt 2000$. This result gives a lower limit for meaningful comparisons between numerical and/or wind tunnel experiments, assuming that the flow was not severely over- or understimulated. It is further shown that even profiles of the wall-normal velocity fluctuations and Reynolds shear stress collapse for higher${\mathit{Re}}_{\theta } $irrespective of the upstream conditions. In addition, the overshoot in the total shear stress within the sublayer observed in the DNS of Wu & Moin (Phys. Fluids, vol. 22, 2010, art. 085105) has been identified as a feature of transitional boundary layers.


2018 ◽  
Vol 857 ◽  
pp. 345-373 ◽  
Author(s):  
Davide Gatti ◽  
Andrea Cimarelli ◽  
Yosuke Hasegawa ◽  
Bettina Frohnapfel ◽  
Maurizio Quadrio

This paper addresses the integral energy fluxes in natural and controlled turbulent channel flows, where active skin-friction drag reduction techniques allow a more efficient use of the available power. We study whether the increased efficiency shows any general trend in how energy is dissipated by the mean velocity field (mean dissipation) and by the fluctuating velocity field (turbulent dissipation). Direct numerical simulations (DNS) of different control strategies are performed at constant power input (CPI), so that at statistical equilibrium, each flow (either uncontrolled or controlled by different means) has the same power input, hence the same global energy flux and, by definition, the same total energy dissipation rate. The simulations reveal that changes in mean and turbulent energy dissipation rates can be of either sign in a successfully controlled flow. A quantitative description of these changes is made possible by a new decomposition of the total dissipation, stemming from an extended Reynolds decomposition, where the mean velocity is split into a laminar component and a deviation from it. Thanks to the analytical expressions of the laminar quantities, exact relationships are derived that link the achieved flow rate increase and all energy fluxes in the flow system with two wall-normal integrals of the Reynolds shear stress and the Reynolds number. The dependence of the energy fluxes on the Reynolds number is elucidated with a simple model in which the control-dependent changes of the Reynolds shear stress are accounted for via a modification of the mean velocity profile. The physical meaning of the energy fluxes stemming from the new decomposition unveils their inter-relations and connection to flow control, so that a clear target for flow control can be identified.


2019 ◽  
Vol 880 ◽  
pp. 478-496 ◽  
Author(s):  
Shengqi Zhang ◽  
Zhenhua Xia ◽  
Yipeng Shi ◽  
Shiyi Chen

Spanwise rotating plane Poiseuille flow (RPPF) is one of the canonical flow problems to study the effect of system rotation on wall-bounded shear flows and has been studied a lot in the past. In the present work, a two-dimensional-three-component (2D/3C) model for RPPF is introduced and it is shown that the present model is equivalent to a thermal convection problem with unit Prandtl number. For low Reynolds number cases, the model can be used to study the stability behaviour of the roll cells. It is found that the neutral stability curves, critical eigensolutions and critical streamfunctions of RPPF at different rotation numbers ($Ro$) almost collapse with the help of a rescaling with a newly defined Rayleigh number $Ra$ and channel height $H$. Analytic expressions for the critical Reynolds number and critical wavenumber at different $Ro$ can be obtained. For a turbulent state with high Reynolds number, the 2D/3C model for RPPF is self-sustained even without extra excitations. Simulation results also show that the profiles of mean streamwise velocity and Reynolds shear stress from the 2D/3C model share the same linear laws as the fully three-dimensional cases, although differences on the intercepts can be observed. The contours of streamwise velocity fluctuations behave like plumes in the linear law region. We also provide an explanation to the linear mean velocity profiles observed at high rotation numbers.


2011 ◽  
Vol 681 ◽  
pp. 411-433 ◽  
Author(s):  
HEMANT K. CHAURASIA ◽  
MARK C. THOMPSON

A detailed numerical study of the separating and reattaching flow over a square leading-edge plate is presented, examining the instability modes governing transition from two- to three-dimensional flow. Under the influence of background noise, experiments show that the transition scenario typically is incompletely described by either global stability analysis or the transient growth of dominant optimal perturbation modes. Instead two-dimensional transition effectively can be triggered by the convective Kelvin–Helmholtz (KH) shear-layer instability; although it may be possible that this could be described alternatively in terms of higher-order optimal perturbation modes. At least in some experiments, observed transition occurs by either: (i) KH vortices shedding downstream directly and then almost immediately undergoing three-dimensional transition or (ii) at higher Reynolds numbers, larger vortical structures are shed that are also three-dimensionally unstable. These two paths lead to distinctly different three-dimensional arrangements of vortical flow structures. This paper focuses on the mechanisms underlying these three-dimensional transitions. Floquet analysis of weakly periodically forced flow, mimicking the observed two-dimensional quasi-periodic base flow, indicates that the two-dimensional vortex rollers shed from the recirculation region become globally three-dimensionally unstable at a Reynolds number of approximately 380. This transition Reynolds number and the predicted wavelength and flow symmetries match well with those of the experiments. The instability appears to be elliptical in nature with the perturbation field mainly restricted to the cores of the shed rollers and showing the spatial vorticity distribution expected for that instability type. Indeed an estimate of the theoretical predicted wavelength is also a good match to the prediction from Floquet analysis and theoretical estimates indicate the growth rate is positive. Fully three-dimensional simulations are also undertaken to explore the nonlinear development of the three-dimensional instability. These show the development of the characteristic upright hairpins observed in the experimental dye visualisations. The three-dimensional instability that manifests at lower Reynolds numbers is shown to be consistent with an elliptic instability of the KH shear-layer vortices in both symmetry and spanwise wavelength.


2017 ◽  
Vol 817 ◽  
pp. 560-589 ◽  
Author(s):  
Juan José Peña Fernández ◽  
Jörn Sesterhenn

The dominant feature of the compressible starting jet is the interaction between the emerging vortex ring and the trailing jet. There are two types of interaction: the shock–shear layer–vortex interaction and the shear layer–vortex interaction. The former is clearly not present in the incompressible case, since there are no shocks. The shear layer–vortex interaction has been reported in the literature in the incompressible case and it was found that compressibility reduces the critical Reynolds number for the interaction. Four governing parameters describe the compressible starting jet: the non-dimensional mass supply, the Reynolds number, the reservoir to unbounded chamber temperature ratio and the reservoir to unbounded chamber pressure ratio. The latter parameter does not exist in the incompressible case. For large Reynolds numbers, the vortex pinch-off takes place in a multiple way. We studied the compressible starting jet numerically and found that the interaction strongly links the vortex ring and the trailing jet. The shear layer–vortex interaction leads to a rapid breakdown of the head vortex ring when the flow impacted by the Kelvin–Helmholtz instabilities is ingested into the head vortex ring. The shock–shear layer–vortex interaction is similar to the noise generation mechanism of broadband shock noise in a continuously blowing jet and results in similar sound pressure amplitudes in the far field.


Author(s):  
Iman Ashtiani Abdi ◽  
Morteza Khashehchi ◽  
Kamel Hooman

Flow structures downstream of a finned-tube are compared to those of an identical pipe; with the same diameter and length, covered with a foam layer. The standard case of cross-flow over a bare tube, i.e. no surface extension, is also tested as a benchmark. Experiments are conducted in a wind tunnel at Reynolds numbers of 4000 and 16000. Particle image velocimetry (PIV) was used for flow visualization on two different perpendicular planes. To characterize the size of the flow structures downstream of the tube, for each of the aforementioned case, two-point correlation, as a statistical analysis tool, has been used. It has been observed that by decreasing the Reynolds number, the flow structures are further stretched in streamwise direction for both bare and finned-tube cases. This is, however, more pronounced with the former. Interestingly, with a foam-wrapped tube the sizes of the flow structures are found to be independent of the Reynolds number. Finally, the structure sizes are smaller in the case of the foam-wrapped tube compared to those of finned-tube.


1985 ◽  
Vol 107 (4) ◽  
pp. 489-494 ◽  
Author(s):  
C. D. Tropea ◽  
R. Gackstatter

The flow over a fence and a block mounted in a fully developed channel flow is experimentally investigated as a function of the Reynolds number, blockage ratio and length-to-height ratio using a laser-Doppler-anemometer. The information obtained includes the location and size of the primary and secondary recirculation zones, and profiles of the mean streamwise velocity component. The experiments were carried out in a channel for a Reynolds number in the range 150 < ReH < 4500. Comparisons are drawn between the obstacle flow and the backward-facing step flow.


Author(s):  
N. K. Burgess ◽  
P. M. Ligrani

Experimental results, measured on dimpled test surfaces placed on one wall of different channels, are given for a ratio of air inlet stagnation temperature to surface temperature of approximately 0.94, and Reynolds numbers based on channel height from 9,940 to 74,800. The data presented include friction factors, local Nusselt numbers, spatially-averaged Nusselt numbers, and globally-averaged Nusselt numbers. The ratios of dimple depth to dimple print diameter δ/D are 0.1, 0.2, and 0.3 to provide information on the influences of dimple depth. The ratio of channel height to dimple print diameter is 1.00. At all Reynolds numbers considered, local and spatially-resolved Nusselt number augmentations increase as dimple depth increases (and all other experimental and geometric parameters are held approximately constant). These are attributed to: (i) increases in the strengths and intensity of vortices and associated secondary flows ejected from the dimples, as well as (ii) increases in the magnitudes of three-dimensional turbulence production and turbulence transport. The effects of these phenomena are especially apparent in local Nusselt number ratio distributions measured just inside of the dimples, and just downstream of the downstream edges of the dimples. Data are also presented to illustrate the effects of Reynolds number, and streamwise development for δ/D = 0.1 dimples. Significant local Nusselt number ratio variations are observed at different streamwise locations, whereas variations with Reynolds number are mostly apparent on flat surfaces just downstream of individual dimples.


1988 ◽  
Vol 110 (2) ◽  
pp. 202-211 ◽  
Author(s):  
A. P. Morse

Predictions of the isothermal, incompressible flow in the cavity formed between two corotating plane disks and a peripheral shroud have been obtained using an elliptic calculation procedure and a low turbulence Reynolds number k–ε model for the estimation of turbulent transport. Both radial inflow and outflow are investigated for a wide range of flow conditions involving rotational Reynolds numbers up to ∼106. Although predictive accuracy is generally good, the computed flow in the Ekman layers for radial outflow often displays a retarded spreading rate and a tendency to laminarize under conditions that are known from experiment to produce turbulent flow.


Sign in / Sign up

Export Citation Format

Share Document