Operating Experience With the Gas Turbine Powered LNG/Ethylene Carrier “LUCIAN”

1978 ◽  
Author(s):  
K. Naesheim ◽  
W. I. Rowen

The GTV LUCIAN is a 29,000-cu m liquefied gas carrier designed, utilizing the Kvaerner-Moss tank system, as a world trader. The vessel is powered by a 20,000-hp heavy-duty marine gas turbine, equipped to burn a wide range of heavy residual fuels in combination with LNG cargo boil-off. Since entering commmercial service in June 1975, the LUCIAN has traveled almost 150,000 n.m., and accumulated approximately 9000 fired hours on the propulsion machinery. Virtually all of this service occurred using heavy residua fuels, with some operation in a dual-fuel mode with cargo boil-off, when LNG cargo was being carried. This paper briefly describes the vessel and her propulsion machinery, with particular emphasis on those features which are unique to this application. The operating experiences acquired during the last two years are then reviewed. Operating problems encountered with the propulsion machinery are discussed in depth, as are the solutions developed to resolve them.

2021 ◽  
Author(s):  
Daniele Pampaloni ◽  
Antonio Andreini ◽  
Alessandro Marini ◽  
Giovanni Riccio ◽  
Gianni Ceccherini

Abstract Thermoacoustic characterization of gas turbine combustion systems is of primary importance for successful development of gas turbine technology, to meet the stringent targets on pollutant emissions. In this context, it becomes more and more necessary to develop reliable tools to be used in the industrial design process. The dynamics of a lean-premixed full-annular combustor for heavy-duty applications has been numerically studied in this work. The well-established CFD-SI method has been used to investigate the flame response varying operational parameters such as the flame temperature (global equivalence ratio) and the fuel split between premixed and pilot fuel injections: such a wide range experimental characterization represents an opportunity to validate the employed numerical methods and to give a deeper insight into the flame dynamics. URANS simulations have been performed, due to their affordable computational costs from the industrial perspective, after validating their accuracy through the comparison against LES results. Furthermore, an approach where the pilot and the premixed flame responses are analyzed separately is proposed, exploiting the independence of their evolution. The calculated FTFs have been implemented in a 3D FEM model of the chamber, in order to perform linear stability analysis and to validate the numerical approach. A boundary condition for rotational periodicity based on Bloch-Wave theory has been implemented into the Helmholtz solver and validated against full-annular chamber simulations, allowing a significant reduction in computational time. The reliability of the numerical procedure has been assessed through the comparison against full-annular experimental results.


1970 ◽  
Author(s):  
R. R. Oliver ◽  
F. Fraschetti

This paper describes the performance and mechanical design of a 4500-hp, two shaft heavy duty simple or regenerative cycle gas turbine. This machine resulted from an international cooperative effort of the joint authors’ respective companies. Initially planned for gas pipelines and process applications, a line of load compressors has been integrated into the single package design. Options include indoor or outdoor models and geared or direct mechanical output for applications not served by the integral compressor models. A variable area load turbine nozzle assures maximum efficiency over a wide range of load, speed, and amibient conditions.


1974 ◽  
Author(s):  
A. J. Orsino ◽  
K. E. Gilbert ◽  
H. Kojima

This paper describes the design of a 65,000-Hp heavy duty gas turbine for marine service, for land-based mechanical drive applications and for 50 Hz power generation. Operating experience of generically similar units was used to establish the high level of reliability and maintainability incorporated into this unit. This model series gas turbine will be available for commercial application in 1974.


Author(s):  
A. O. White

This paper covers the early experience of the author’s company in burning residual oils in their gas turbines and the problems that occurred. The laboratory invesgations and field tests that resulted in a fuel processing system that permitted satisfactory operation on a wide range of liquid fuels are described. The operating experiences, where residual fuels were successfully burned in a large number of units, are described. The most recent operating experience with residual and crude oils and heavy distillates is also covered. A list of the various installations with dates and hours of operation is included and it is concluded that heavy duty gas turbines burning heavy fuels will be established as the up-to-date source of economical power in many applications.


Author(s):  
Matteo Cerutti ◽  
Nicola Giannini ◽  
Bruno Schuermans ◽  
Riccardo Brenci ◽  
Alessandro Marini ◽  
...  

Abstract This paper describes the development phases of a damping system for combustion instability reduction in an annular type combustor for heavy-duty gas turbine applications. As reported by the authors in a previous paper, the full scale annular test rig allowed for an extensive characterization of the combustor with realistic acoustic boundaries at engine-relevant conditions. Emissions and operability assessment over a wide range of load conditions was performed, allowing the evaluation of the response of the system near the thermo-acoustic instability onset. The instability is quantified by its acoustic growth rate. This quantity is a crucial input in the design process of dampers. A methodology has been used to extract these growth rates form measured pulsation data. Experimentally determined growth rates have been evaluated for different fuel flow rate split between the main and the pilot injections, providing input to dampers preliminary design. Given current combustor architecture constraints, a first attempt configuration has been proposed and performances evaluated in the full annular rig. Dampers have been equipped with dynamic sensors and thermocouples with the purpose of measuring the growth rate abatement and the consequent NOx emissions reduction. A dedicated numerical toolbox, in-house developed by GE Power, has been used for both dampers preliminary design and growth rate reduction evaluation. Fine tuning of dampers elements as well as design assumptions adjustments required additional experimental evaluations and design iterations. Encouraged by the successful test in the concept phase, an optimized design for engine implementation was defined, that featured a significant increased damper volume, involving combustor parts re-design. The optimized configuration was finally tested in full annular rig and results demonstrated an important enhancement of operability while maintaining NOx emissions below the target levels.


2016 ◽  
Vol 139 (2) ◽  
Author(s):  
Shi Liu ◽  
Hong Yin ◽  
Yan Xiong ◽  
Xiaoqing Xiao

Heavy duty gas turbines are the core components in the integrated gasification combined cycle (IGCC) system. Different from the conventional fuel for gas turbine such as natural gas and light diesel, the combustible component acquired from the IGCC system is hydrogen-rich syngas fuel. It is important to modify the original gas turbine combustor or redesign a new combustor for syngas application since the fuel properties are featured with the wide range hydrogen and carbon monoxide mixture. First, one heavy duty gas turbine combustor which adopts natural gas and light diesel was selected as the original type. The redesign work mainly focused on the combustor head and nozzle arrangements. This paper investigated two feasible combustor arrangements for the syngas utilization including single nozzle and multiple nozzles. Numerical simulations are conducted to compare the flow field, temperature field, composition distributions, and overall performance of the two schemes. The obtained results show that the flow structure of the multiple nozzles scheme is better and the temperature distribution inside the combustor is more uniform, and the total pressure recovery is higher than the single nozzle scheme. Through the full scale test rig verification, the combustor redesign with multiple nozzles scheme is acceptable under middle and high pressure combustion test conditions. Besides, the numerical computations generally match with the experimental results.


Author(s):  
Federico Bonzani ◽  
Carlo Piana ◽  
Domenico Zito

In order to improve operability and flexibility, Ansaldo Energia has upgraded its top of the line AE94.3A gas turbine with a new combustion system called VeLoNOx™ (Very Low NOx) based on its own experience. This new combustion system meets the most stringent pollutant limitations (as of today) required by the governments all over EU, i.e. less than 15 ppm NOx emissions. The system has been first tested intensively on a single AE94.3A built by Ansaldo Energia. Due to the long term service agreement with the customer the whole operation has been constantly monitored and all most relevant operational conditions have been tested. Then has been installed on other engines. Up to now VeLoNOx™ combustion systems have been cumulating more than 25000 EOH on many sites, showing very good performances in line with expectations. Orders for many retrofit applications have been already awarded. This paper describes the performance of the system on the units of Ansaldo Energia fleet such as AE94.3A2 and AE94.3A4, focusing on the improvements carried out during commercial operation.


Author(s):  
Federico Bonzani ◽  
Giacomo Pollarolo ◽  
Franco Rocca

ANSALDO ENERGIA S.p.A. has been commissioned by ELETTRA GLT S.p.A, a company located in Trieste, Italy for the realisation of a combined cycle plant where all the main components (gas turbine, steam turbine, generator and heat recovery steam generator) are provided by ANSALDO ENERGIA. The total power output of the plant is 180 MW. The gas turbine is a V94.2 K model gas turbine dual fuel (natural gas and steelworks process gas), where the fuel used as main fuel is composed by a mixture of natural gas, blast furnace gas and coke oven gas in variable proportions according to the different working conditions of the steel work plant. The main features adopted to burn such a kind of variability of fuels are reported below: • fuel as by product of steel making factory gas (coke oven gas “COG”, blast furnace gas “BFG”) with natural gas integration; • modified compressor from standard V94.2, since no air extraction is foreseen; • dual fuel burner realised based on Siemens design. This paper describes the operating experience achieved on the gas turbine, focusing on the main critical aspect to be overcome and on to the test results during the commissioning and the early operating phase. The successful performances carried out have been showing a high flexibility in burning with stable combustion a very different fuel compositions with low emissions measured all operating conditions.


2005 ◽  
Vol 127 (1) ◽  
pp. 145-158 ◽  
Author(s):  
R. Bhargava ◽  
C. B. Meher-Homji

With deregulation in the power generation market and a need for flexibility in terms of power augmentation during the periods of high electricity demand, power plant operators all over the world are exploring means to augment power from both the existing and new gas turbines. An approach becoming increasingly popular is that of the high pressure inlet fogging. In this paper, the results of a comprehensive parametric analysis on the effects of inlet fogging on a wide range of existing gas turbines are presented. Both evaporative and overspray fogging conditions have been analyzed. The results show that the performance parameters indicative of inlet fogging effects have a definitive correlation with the key gas turbine design parameters. In addition, this study indicates that the aeroderivative gas turbines, in comparison to the heavy-duty industrial machines, have higher performance improvement due to inlet fogging effects. Plausible reasons for the observed trends are discussed. This paper represents the first systematic study on the effects of inlet fogging for a large number (a total of 67) of gas turbines available from the major gas turbine manufacturers.


Author(s):  
J. Masada ◽  
I. Fukue

A new, 13MW class, heavy duty gas turbine, the “MF-111” was developed for use as a prime mover for cogeneration, combined cycle and repowering applications. The use of such equipment in refineries presents special challenges as regards the combustion of nonstandard fuels, tolerance of industrial environments, and accomodation of site-specific design requirements. Such circumstances add substantially to the tasks of proving and adjusting the design of a new gas turbine, meeting stringent emissions requirements and introducing to the world of industrial gas turbines the benefits of F-class (1250°C burner outlet temperature) levels of thermodynamic performance. This paper describes how these challenges have successfully been met during the three calendar years and ten machine-years of MF-111 refinery-application experience accumulated to-late.


Sign in / Sign up

Export Citation Format

Share Document