scholarly journals Atomizing Characteristics of Swirl Can Combustor Modules With Swirl Blast Fuel Injectors

1980 ◽  
Author(s):  
R. D. Ingebo

Cold flow atomization tests of several different designs of swirl can combustor modules were conducted in a 7.6 cm diameter duct at airflow rates (per unit area) of 7.3 to 25.7 g/cm2 sec and water flow rates of 6.3 to 18.9 g/sec. The effect of air and water flow rates on the mean drop size of water sprays produced with the swirl blast fuel injectors were determined. Also, from these data it was possible to determine the effect of design modifications on the atomizing performance of various fuel injector and air swirler configurations. The trend in atomizing performance, as based on the mean drop size, was then compared with the trends in the production of nitrogen oxides obtained in combustion studies with the same swirl can combustors.

1979 ◽  
Author(s):  
R. D. Ingebo

Axial and swirling airflows were used to break up water jets and sheets into sprays of droplets to determine the overall effects of orifice diameter, weight flow of air, and the use of an air swirler on fineness of atomization as characterized by mean drop size. A scanning radiometer was used to determine the mean drop diameter of each spray. Swirling airflows were produced with an axial combustor, 70-deg brake angle, air swirler. Water jets were injected axially upstream, axially downstream and cross stream into the airflow. In addition, pressure atomizing fuel nozzles which produced a sheet and ligament type of breakup were investigated. Increasing the weight flow rate of air or the use of an air swiler markedly reduced the spray mean drop size. Test conditions included a water flow rate of 68.0 liter per hour and airflow rates (per unit area) of 3.7 to 25.7 g per square cm per sec, at 293 K and inlet-air static pressures of 1.01 × 105 to 1.98 × 105 N/m2.


Author(s):  
D. W. Bahr ◽  
P. E. Sabla ◽  
J. W. Vinson

To permit the use of gasifier-generated low BTU gas fuels in the LM500 engine, a modified version of its existing combustor was defined and tested. The LM500 engine is a small aircraft-derivative engine in the four megawatt class and is used in a variety of industrial applications. The combustor of this engine consists of a short-length and compact annular design with 18 fuel injectors. To accommodate the high volumetric flow rates associated with the use of low BTU gas fuels, a modified fuel injector configuration was defined. With this modified configuration, the combustor was found to operate satisfactorily with low BTU gases over a wide range of heating values. Stable combustion was obtained with fuels having heating values as low as 3.72 MJ/m3 (100 BTU/SCF). Also, acceptable combustion efficiency levels and exit temperature distributions were obtained. Based on these results, it is concluded that the LM500 engine can satisfactorily accommodate low BTU gas fuels typical of those produced by coal or biomass gasifiers and by other industrial processes.


Author(s):  
Waldo A. Acosta

An experimental study of airblast atomization was conducted using an especially designed atomizer in which the liquid first impinges on a splash plate, then is directed radially outward and is atomized by the air passing through two concentric, vaned swirlers that swirl the air in opposite directions. The effect of flow conditions, air mass velocity (mass flow rate per unit area, ρAUA) and liquid to air ratio on the mean drop size was studied. Seven different ethanol solutions were used to simulate changes in fuel physical properties. The range of atomizing air velocities was from 30 to 80 m/s. The mean drop diameter was measured at ambient temperature (295 K) and atmospheric pressure.


2020 ◽  
Vol 51 (4) ◽  
pp. 209-219
Author(s):  
Mohamed Saied Ghoname

An experiment was conducted in three commercial laying hen houses with 32-week-old hens in the summer of 2017 in a commercial farm in Gharbia Province, Egypt (31.06ºN, 31.16ºE) using an evaporative pad cooling system to determine the most suitable water flow rate for maintaining indoor air temperature within the thermal comfort zone. The experiment was conducted using three different water flow rates, i.e. 4.76, 5.65, and 6.35 L min–1.m–2, to assess the effect of different water flow rates on evaporative pad cooling system performance and determine the most suitable water flow rate for maintaining the thermal comfort zone of laying hens. The evaporative pad cooling system maintained the mean indoor air temperature below 28°C. The mean indoor air relative humidity during the experimental period ranged from 72.6 to 73.8%. The 4.76 L min–1.m–2 water flow rate resulted in the highest saturation efficiency (ca. 73.75%). In contrast, the 6.35 L min–1 m–2 water flow rate resulted in the lowest saturation efficiency (70.63%). The mean cooling energy values were 69.11, 66.0, and 66.65 kwh for water flow rates of 4.76, 5.56, and 6.35 Lmin–1m–2, respectively. The highest temperature-humidity index was 27.78°C, which indicated that birds were not stressed in all treatments.


2020 ◽  
Vol 63 (4) ◽  
pp. 1109-1121
Author(s):  
Yijie Xiong ◽  
Richard S. Gates ◽  
Jiaying Hu ◽  
Patricia Y. Hester ◽  
Heng-wei Cheng

This article summarizes the design and performance of a cooled perch system for laying hens during heat stress.Water flow rates, perch loop water temperatures, and system net heat gain are provided.The average daily net heat absorption data, useful for sizing thermal water storage and chiller capacity in future applications, is 256 W m-1 perch length, or 43.2 W per hen housed.This analysis provides a baseline for future cooled perch system design in other application settings.Abstract. This article summarizes the engineering design and performance of a cooled perch system used in a multi-year collaborative study to evaluate cooled perch effects on hen production, health, and welfare during heat stress. The cooled perch system consisted of two replicates (CP-1 and CP-2) of three-tier cage units with galvanized perch pipes forming a complete loop in each tier (top, middle, bottom) in which chilled water circulated. A total of 324 White Leghorns at 17 weeks of age were randomly assigned to 36 cages (76 cm × 52 cm × 48 cm) in six banks placed in the same room. Flow for each loop was provided by loop pumps that drew chilled water from an open thermal storage manifold and returned it to the same manifold. Each thermal storage was cooled by continuously circulating water through a water chiller. Each loop pump was thermostatically controlled based on the cage air temperature. The water inlet and outlet temperatures, cage air temperatures, and loop water flow rates during stable system operation were measured for performance evaluation. Mean water flow rates in 2015 were 5.19 and 5.45 kg min-1 for CP-1 and CP-2, respectively, but significantly declined to 3.91 and 4.03 kg min-1 in 2016. The mean loop water temperature rise was about 2°C for both replicates. The mean loop net heat gain of CP-1 and CP-2 ranged from 690 to 850 W and from 551 to 1,298 W, respectively, with a significant difference between CP-2 loops (p < 0.0001), indicating a discrepancy between the manufacturer’s pump curve and field performance. There was a correlation between room air temperature and net heat gain for all loops of CP-1 and the top loop of CP-2 (p < 0.0001), suggesting that natural convection and radiation from the room to the pipe were the major contributors to loop heat gain. The average daily net heat gain was approximately 2,334 W per replicate, 256 W m-1 perch length, or 43.2 W per hen housed. This analysis provides a baseline for future cooled perch system design in other application settings. An example is provided for sizing the thermal water storage and chiller capacity. In addition, a closed water system with a properly sized expansion tank is recommended for future energy-efficient cooled perch applications. Keywords: Alternative cooling, Heat stress, Heat transfer, Poultry.


Designs ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 4
Author(s):  
Dillon Alexander Wilson ◽  
Kul Pun ◽  
Poo Balan Ganesan ◽  
Faik Hamad

Microbubble generators are of considerable importance to a range of scientific fields from use in aquaculture and engineering to medical applications. This is due to the fact the amount of sea life in the water is proportional to the amount of oxygen in it. In this paper, experimental measurements and computational Fluid Dynamics (CFD) simulation are performed for three water flow rates and three with three different air flow rates. The experimental data presented in the paper are used to validate the CFD model. Then, the CFD model is used to study the effect of diverging angle and throat length/throat diameter ratio on the size of the microbubble produced by the Venturi-type microbubble generator. The experimental results showed that increasing water flow rate and reducing the air flow rate produces smaller microbubbles. The prediction from the CFD results indicated that throat length/throat diameter ratio and diffuser divergent angle have a small effect on bubble diameter distribution and average bubble diameter for the range of the throat water velocities used in this study.


Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 237
Author(s):  
Michal Brezina ◽  
Tomas Mauder ◽  
Lubomir Klimes ◽  
Josef Stetina

The paper presents the comparison of optimization-regulation algorithms applied to the secondary cooling zone in continuous steel casting where the semi-product withdraws most of its thermal energy. In steel production, requirements towards obtaining defect-free semi-products are increasing day-by-day and the products, which would satisfy requirements of the consumers a few decades ago, are now far below the minimum required quality. To fulfill the quality demands towards minimum occurrence of defects in secondary cooling as possible, some regulation in the casting process is needed. The main concept of this paper is to analyze and compare the most known metaheuristic optimization approaches applied to the continuous steel casting process. Heat transfer and solidification phenomena are solved by using a fast 2.5D slice numerical model. The objective function is set to minimize the surface temperature differences in secondary cooling zones between calculated and targeted surface temperatures by suitable water flow rates through cooling nozzles. Obtained optimization results are discussed and the most suitable algorithm for this type of optimization problem is identified. Temperature deviations and cooling water flow rates in the secondary cooling zone, together with convergence rate and operation times needed to reach the stop criterium for each optimization approach, are analyzed and compared to target casting conditions based on a required temperature distribution of the strand. The paper also contains a brief description of applied heuristic algorithms. Some of the algorithms exhibited faster convergence rate than others, but the optimal solution was reached in every optimization run by only one algorithm.


1981 ◽  
Vol 103 (1) ◽  
pp. 34-42 ◽  
Author(s):  
J. R. Shekleton

The Radial Engine Division of Solar Turbines International, an Operating Group of International Harvester, under contract to the U.S. Army Mobility Equipment Research & Development Command, developed and qualified a 10 kW gas turbine generator set. The very small size of the gas turbine created problems and, in the combustor, novel solutions were necessary. Differing types of fuel injectors, combustion chambers, and flame stabilizing methods were investigated. The arrangement chosen had a rotating cup fuel injector, in a can combustor, with conventional swirl flame stabilization but was devoid of the usual jet stirred recirculation. The use of centrifugal force to control combustion conferred substantial benefit (Rayleigh Instability Criteria). Three types of combustion processes were identified: stratified and unstratified charge (diffusion flames) and pre-mix. Emphasis is placed on five nondimensional groups (Richardson, Bagnold, Damko¨hler, Mach, and Reynolds numbers) for the better control of these combustion processes.


Sign in / Sign up

Export Citation Format

Share Document