scholarly journals Measurements of Low Level NOx Emission From a Cheng Cycle Gas Turbine

Author(s):  
Chung-Nan Chang ◽  
Ramarao Digumarthi

Mass steam injection into the combustor of a Cheng Cycle turbine can influence combustion characteristics and pollutant formation. When using a Cheng Cycle system based on a Garrett 831 gas turbine liquid fuel, these influences were studied experimentally. Data obtained to date indicate that significant NOx reduction can be achieved without suffering combustion inefficiency or instability.

Author(s):  
Igor S. Anufriev ◽  
Evgeny P. Kopyev ◽  
Ivan S. Sadkin ◽  
Mariia A. Mukhina

1984 ◽  
Vol 106 (3) ◽  
pp. 699-702 ◽  
Author(s):  
R. Digumarthi ◽  
Chung-Nan Chang

The Cheng-Cycle turbine engine is a superheated steam injected gas turbine cycle system. This work is based on the Garrett 831 gas turbine. The development effort involved the design and manufacture of an experimental heat recovery steam generator, a steam injection system, and system controls. Measured performance data indicate the 26 percent efficiency improvement has been obtained compared to that of the basic turbine engine at its continuous power rating.


Author(s):  
P. R. Mulik ◽  
P. P. Singh ◽  
A. Cohn

A total of five combustion tests utilizing water injection for control of NO, emissions have been conducted on three types of coal-derived liquid (CDL) fuels from the H-Coal and SRC II processes along with a shale-derived liquid (SDL) fuel supplied by the Radian Corporation. Actual testing was performed in a 0.14 m diameter gas-turbine-type combustor. For comparative purposes, each run with a synthetic liquid fuel was preceded by a baseline run utilizing No. 2 distillate oil. The effectiveness of water injection was found to decrease as the fuel-bound nitrogen (FBN) content of the synthetic liquids increased.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Serhiy Serbin ◽  
Kateryna Burunsuz

AbstractInvestigations of the working process in a gas turbine combustion chamber with ecological and energy steam injection operating on liquid fuel are conducted. The mathematical model of the aerodynamic processes and liquid fuel combustion in similar burning devices based on the numerical solution of the system of conservation and transport equations for a multi-component chemically reactive turbulent system is developed. The influence of the relative steam mass flow rate (the ratio of the sum of the mass flow rates of ecological and energy steam to the fuel consumption) on the combustion chamber’s emission characteristics is determined. The obtained results can be used for parameter selection and optimization of promising high-temperature gas turbine combustion chambers with steam injection operating on liquid fuels.


Author(s):  
Vera Hoferichter ◽  
Denise Ahrens ◽  
Michael Kolb ◽  
Thomas Sattelmayer

Staged combustion is a promising technology for gas turbines to achieve load flexibility and low NOx emission levels at the same time. Therefore, a large scale atmospheric test rig has been set up at the Institute of Thermodynamics, Technical University of Munich to study NOx emission characteristics of a reacting jet in hot cross flow. The premixed primary combustion stage is operated at ϕ = 0.5 and provides the hot cross flow. In the second stage a premixed jet at ϕ = 0.77 is injected perpendicular to the first stage. In both stages natural gas is used as fuel and air as oxidant. This paper presents a reactor model approach for the computation of the resulting NOx concentrations. The mixing and ignition process along the jet streamline of maximum NOx formation is simulated using a perfectly stirred reactor with Cantera 1.8. The reactor model is validated for the ambient pressure case using experimental data. Afterwards, a high pressure simulation is performed in order to investigate the NOx emission characteristics under gas turbine conditions. The NOx formation is divided into flame NOx and post flame NOx. The reactor model reveals that the formation of post flame NOx in the second combustion stage can be efficiently suppressed due to fast mixing with cross flow material and the corresponding temperature reduction. Compared to single stage combustion with the same power output, no NOx reduction was observed in the experiment. However, the results from the reactor model suggest a NOx reduction potential at gas turbine conditions caused by the increased influence of post flame NOx production at high pressure.


1993 ◽  
Author(s):  
T. Becker ◽  
M. Perkavec

In a coking plant in which coal tar is processed coke oven gas occurs as a waste product. Coke oven gas can be used as an alternative fuel for a gas turbine, instead of natural gas, if it meets the local environmental regulations. As a result of higher flame temperature of coke oven gas caused by the hydrogen content, the NOx emission of a gas turbine burning coke oven gas is higher than in case of natural gas. In Germany a 10 MW gas fired gas turbine has to meet a NOx emission limit of 150 mg/Nm3 @ 15% O2 dry. To reach this goal in case of MS 3002, which is installed in the coking plant as reported in previous ASME paper, steam injection is necessary. NOx- and CO-emissions of a gas turbine are difficult to be predicted by calculation, therefore measurements had to be done to see how good the predictions were, that were made in face of the local regulations. This paper deals with the NOx- and CO-emissions of a coke oven gas fired gas turbine with and without steam injection in difference to natural gas fired gas turbine. It shows also significantly lower CO2-emissions, because coke oven gas contains less hydrocarbon which is a great benefit for the greenhouse problem. It illustrates the effect of power augmentation and discusses the different thermal efficiency with steam injection. This paper gives a short glance to the effects which influence the emissions, so that the specific problems caused by burning coke oven gas can be understood.


Author(s):  
Stefano Cocchi ◽  
Michele Provenzale ◽  
Valerio Cinti ◽  
Luciano Carrai ◽  
Stefano Sigali ◽  
...  

In the frame of a research project launched in 2006 (partly funded by Regione Veneto, a local institution in the North-East of Italy), ENEL and Nuovo Pignone are developing an innovative “zero emission” gas turbine cycle suitable for power generation. The gas turbine, a GE10-1 model, is manufactured by Nuovo Pignone and will be installed at ENEL’s coal-fired Fusina power plant, near Venice. The turbine, rated for 11 MWe, is equipped with a diffusive flame combustor and is suitable for operation with 100% hydrogen as main fuel over the entire load range. Hydrogen is available at Fusina site as by-product of petrochemical plants. Natural gas will be used as start-up and back-up fuel, and NOx emission abatement will be achieved by means of steam injection. Load operation will be possible with hydrogen only, with methane or hydrogen-methane mixtures (in case of reduced availability of hydrogen) and with or without steam injection. In order to support the combustion system’s design, experimental activities have been carried over a prototypical combustor, installed on a combustion test rig at ENEL’s experimental facility, located in Sesta (Tuscany). The test rig has been upgraded in order to permit full-scale combustor operation. Tests have been planned with the aim of providing a complete screening of combustion system’s sensitivity to minor hardware modification (three different burners and two different liners, designed for diffusive combustion, have been available) and operating conditions (sensitivity to cycle parameters and effect of steam injection). Special instrumentations have been installed for a detailed monitoring of hot parts’ metal temperature, combustion-driven pressure oscillations and pollutant emissions. A water-cooled camera has been installed for direct flame visualization. The experimental campaign is still on-going and only the default combustor configuration has been tested so far. However, collected results indicate safe combustor operation in both hydrogen and methane combustion mode: metal temperatures have never exceeded warning limits and pressure pulsation have been extremely quiet. NOx emission during hydrogen operation in dry combustion mode have been proven to be roughly 3 times higher than in dry methane combustion mode. Steam injection has been proven to be effective in reducing NOx emissions down to contractual values. Additional efforts are in progress to obtain a further reduction of emission level. Finally, experimental results have been processed in order to set up a simple NOx emissions’ model, accounting for NOx production in any possible operating mode.


1994 ◽  
Vol 116 (1) ◽  
pp. 53-62 ◽  
Author(s):  
F. Bozza ◽  
R. Tuccillo ◽  
G. Fontana

The rise in gas turbine combustion chamber temperatures requires optimal choices to be made with regard not only to performance parameters but also with a view to resolving pollutant emission problems. For this reason, the authors have set up a gas turbine cycle model, which performs an accurate analysis of several processes, in terms of operating fluid chemical and thermodynamic properties. The model also enables prediction of NOx formation based upon chemical kinetics and is able to relate the amount of pollutants to a number of operating parameters (e.g., cycle pressure ratio, fuel-to-air equivalence ratio, residence time in combustion chamber, etc.). It can also predict the effect of most usual NOx reduction systems, such as water or steam injection. A comparison of several possible choices for the gas and combined cycles is then presented, in terms of thermodynamic performance (e.g., first and second law analysis) and nitric and carbon dioxide emissions. In order to find the best compromise between performance improvement and limitation of pollutant emission, enhanced gas cycles are also considered, such as STIG or intercooled-reheat cycles. Examples also refer to medium or low Btu gases, obtained from coal gasification, in order to show not only the possible advantages in terms of thermal NOx reduction, but also the significant amounts of “fuel NOx” that can arise from ammonia contained in the fuel.


Author(s):  
Stephen Gallimore ◽  
R. Michael Vickers ◽  
Michael B. Boyns

The Tornado gas turbine was designed at a time when emissions legislation was minimal and was developed through the eighties to accept water or steam injection for NOX reduction. In recent years it has become necessary to develop dry methods of emissions reduction for new engine sales and to enable existing operators to retrofit their engines when legislation demands. The compact design of the Tornado’s centre section did not lend itself to a simple combustor changeout. The lean pre-mix dry low emissions (DLE) system developed for the Typhoon gas turbine required additional combustor length for CO burnout and could not be fitted into the existing casings of the Tornado engine. The challenge was therefore to redesign the centre section to enable the DLE system to be fitted without compromising the design of the compressor, HP turbine and gas generator rotor. This paper describes the methodology used and the design of the engine centre section together with the results of design and performance validation undertaken including emissions measurements.


RSC Advances ◽  
2021 ◽  
Vol 11 (41) ◽  
pp. 25575-25585
Author(s):  
Mostafa Raafat Kotob ◽  
Tianfeng Lu ◽  
Seddik S. Wahid

We experimentally compare the effect of different direct water and steam injection tilting angles on NOx emission values. The results showed that water and steam injection are effective tools to reduce NOx emission by 70% and 57% respectively.


Sign in / Sign up

Export Citation Format

Share Document