Cheng-Cycle Implementation on a Small Gas Turbine Engine

1984 ◽  
Vol 106 (3) ◽  
pp. 699-702 ◽  
Author(s):  
R. Digumarthi ◽  
Chung-Nan Chang

The Cheng-Cycle turbine engine is a superheated steam injected gas turbine cycle system. This work is based on the Garrett 831 gas turbine. The development effort involved the design and manufacture of an experimental heat recovery steam generator, a steam injection system, and system controls. Measured performance data indicate the 26 percent efficiency improvement has been obtained compared to that of the basic turbine engine at its continuous power rating.

Author(s):  
Olav Bolland ◽  
Jan Fredrik Stadaas

Combined cycles have gained widespread acceptance as the most efficient utilization of the gas turbine for power generation, particularly for large plants. A variety of alternatives to the combined cycle that recover exhaust gas heat for re-use within the gas turbine engine have been proposed and some have been commercially successful in small to medium plants. Most notable has been the steam injected, high-pressure aero-derivatives in sizes up to about 50 MW. Many permutations and combinations of water injection, steam injection, and recuperation, with or without intercooling, have been shown to offer the potential for efficiency improvements in certain ranges of gas turbine cycle design parameters. A detailed, general model that represents the gas turbine with turbine cooling has been developed. The model is intended for use in cycle analysis applications. Suitable choice of a few technology description parameters enables the model to accurately represent the performance of actual gas turbine engines of different technology classes. The model is applied to compute the performance of combined cycles as well as that of three alternatives. These include the simple cycle, the steam injected cycle and the dual-recuperated intercooled aftercooled steam injected cycle (DRIASI cycle). The comparisons are based on state-of-the-art gas turbine technology and cycle parameters in four classes: large industrial (123–158 MW), medium industrial (38–60 MW), aeroderivatives (21–41 MW) and small industrial (4–6 MW). The combined cycle’s main design parameters for each size range are in the present work selected for computational purposes to conform with practical constraints. For the small systems, the proposed development of the gas turbine cycle, the DRIASI cycle, are found to provide efficiencies comparable or superior to combined cycles, and superior to steam injected cycles. For the medium systems, combined cycles provide the highest efficiencies but can be challenged by the DRIASI cycle. For the largest systems, the combined cycle was found to be superior to all of the alternative gas turbine based cycles considered in this study.


1995 ◽  
Vol 117 (1) ◽  
pp. 138-145 ◽  
Author(s):  
O. Bolland ◽  
J. F. Stadaas

Combined cycles have gained widespread acceptance as the most efficient utilization of the gas turbine for power generation, particularly for large plants. A variety of alternatives to the combined cycle that recover exhaust gas heat for re-use within the gas turbine engine have been proposed and some have been commercially successful in small to medium plants. Most notable have been the steam-injected, high-pressure aeroderivatives in sizes up to about 50 MW. Many permutations and combinations of water injection, steam injection, and recuperation, with or without intercooling, have been shown to offer the potential for efficiency improvements in certain ranges of gas turbine cycle design parameters. A detailed, general model that represents the gas turbine with turbine cooling has been developed. The model is intended for use in cycle analysis applications. Suitable choice of a few technology description parameters enables the model to represent accurately the performance of actual gas turbine engines of different technology classes. The model is applied to compute the performance of combined cycles as well as that of three alternatives. These include the simple cycle, the steam-injected cycle, and the dual-recuperated intercooled aftercooled steam-injected cycle (DRIASI cycle). The comparisons are based on state-of-the-art gas turbine technology and cycle parameters in four classes: large industrial (123–158 MW), medium industrial (38–60 MW), aeroderivatives (21–41 MW), and small industrial (4–6 MW). The combined cycle’s main design parameters for each size range are in the present work selected for computational purposes to conform with practical constraints. For the small systems, the proposed development of the gas turbine cycle, the DRIASI cycle, are found to provide efficiencies comparable or superior to combined cycles, and superior to steam-injected cycles. For the medium systems, combined cycles provide the highest efficiencies but can be challenged by the DRIASI cycle. For the largest systems, the combined cycle was found to be superior to all of the alternative gas turbine based cycles considered in this study.


2015 ◽  
Vol 5 (2) ◽  
pp. 89
Author(s):  
Munzer S. Y. Ebaid ◽  
Qusai Z. Al-hamdan

<p class="1Body">Several modifications have been made to the simple gas turbine cycle in order to increase its thermal efficiency but within the thermal and mechanical stress constrain, the efficiency still ranges between 38 and 42%. The concept of using combined cycle power or CPP plant would be more attractive in hot countries than the combined heat and power or CHP plant. The current work deals with the performance of different configurations of the gas turbine engine operating as a part of the combined cycle power plant. The results showed that the maximum CPP cycle efficiency would be at a point for which the gas turbine cycle would have neither its maximum efficiency nor its maximum specific work output. It has been shown that supplementary heating or gas turbine reheating would decrease the CPP cycle efficiency; hence, it could only be justified at low gas turbine inlet temperatures. Also it has been shown that although gas turbine intercooling would enhance the performance of the gas turbine cycle, it would have only a slight effect on the CPP cycle performance.</p>


Author(s):  
Kenichiro Mochizuki ◽  
Satoshi Shibata ◽  
Umeo Inoue ◽  
Toshiaki Tsuchiya ◽  
Hiroko Sotouchi ◽  
...  

As the energy consumption has been increasing rapidly in the commercial sector in Japan, the market potential for the micro gas turbine is significant and it will be realized substantially if the thermal efficiency is improved. One of measures is to introduce the steam injection system using the steam generated by the heat recovery steam generator. Steam injection tests have been carried out using a micro gas turbine (Capstone C60). Test results showed that key performance parameters such as power output, thermal efficiency and emissions were improved by the steam injection. The stable operation of micro gas turbine with steam injection was confirmed under various operating conditions. Consequently, a micro gas turbine based co-generation package with steam injection driven by a heat recovery steam generator (HRSG) with supplementary firing is proposed.


Author(s):  
Mohsen Ghazikhani ◽  
Nima Manshoori ◽  
Davood Tafazoli

An industrial gas turbine has the characteristic that turbine output decreases on hot summer days when electricity demand peaks. For GE-F5 gas turbines of Mashad Power Plant when ambient temperature increases 1° C, compressor outlet temperature increases 1.13° C and turbine exhaust temperature increases 2.5° C. Also air mass flow rate decreases about 0.6 kg/sec when ambient temperature increases 1° C, so it is revealed that variations are more due to decreasing in the efficiency of compressor and less due to reduction in mass flow rate of air as ambient temperature increases in constant power output. The cycle efficiency of these GE-F5 gas turbines reduces 3 percent with increasing 50° C of ambient temperature, also the fuel consumption increases as ambient temperature increases for constant turbine work. These are also because of reducing in the compressor efficiency in high temperature ambient. Steam injection in gas turbines is a way to prevent a loss in performance of gas turbines caused by high ambient temperature and has been used for many years. VODOLEY system is a steam injection system, which is known as a self-sufficient one in steam production. The amount of water vapor in combustion products will become regenerated in a contact condenser and after passing through a heat recovery boiler is injected in the transition piece after combustion chamber. In this paper the influence of steam injection in Mashad Power Plant GE-F5 gas turbine parameters, applying VODOLEY system, is being observed. Results show that in this turbine, the turbine inlet temperature (T3) decreases in a range of 5 percent to 11 percent depending on ambient temperature, so the operating parameters in a gas turbine cycle equipped with VODOLEY system in 40° C of ambient temperature is the same as simple gas turbine cycle in 10° C of ambient temperature. Results show that the thermal efficiency increases up to 10 percent, but Back-Work ratio increases in a range of 15 percent to 30 percent. Also results show that although VODOLEY system has water treatment cost but by using this system the running cost will reduce up to 27 percent.


Author(s):  
C. Kalathakis ◽  
N. Aretakis ◽  
I. Roumeliotis ◽  
A. Alexiou ◽  
K. Mathioudakis

A simulation environment allowing steady state and transient modeling is used for assessing several gas turbine based cycles proposed for solar hybridization. First, representative open cycle gas turbine configurations, namely, (a) single shaft (SS), (b) recuperated single-shaft, (c) twin shaft (TS), and (d) two-spool three-shaft, intercooled, recuperated, are evaluated. The importance of design point selection in terms of solar share value is highlighted. Solar steam injection gas turbine cycle (STIG) alternatives, namely, solar steam only and solar/fuel gas steam, are then assessed. Finally, the concept of a dual fluid receiver (DFR) for exploiting the rejected solar power by producing steam during sunny hours with high irradiation is demonstrated. The effects of hybridization on performance and operability are established and evaluated. Solarization effect on performance is estimated in terms of annual produced power and fossil fuel savings. The results indicate that the spool arrangement affects the suitability of a gas turbine for hybridization. Recuperated configurations performed better for the design constrains imposed by current technology solar parts. Solar steam injection is a promising solution for retrofitted fuel-only and conventional STIG engines.


Author(s):  
Abdallah Bouam ◽  
Slimane Aissani ◽  
Rabah Kadi

The gas turbines are generally used for large scale power generation. The basic gas turbine cycle has low thermal efficiency, which decreases in the hard climatic conditions of operation, so the cycles with thermodynamic improvement is found to be necessary. Among several methods shown their success in increasing the performances, the steam injected gas turbine cycle (STIG) consists of introducing a high amount of steam at various points in the cycle. The main purpose of the present work is to improve the principal characteristics of gas turbine used under hard condition of temperature in Algerian Sahara by injecting steam in the combustion chamber. The suggested method has been studied and compared to a simple cycle. Efficiency, however, is held constant when the ambient temperature increases from ISO conditions to 50°C. Computer program has been developed for various gas turbine processes including the effects of ambient temperature, pressure ratio, injection parameters, standard temperature, and combustion chamber temperature with and without steam injection. Data from the performance testing of an industrial gas turbine, computer model, and theoretical study are used to check the validity of the proposed model. The comparison of the predicted results to the test data is in good agreement. Starting from the advantages, we recommend the use of this method in the industry of hydrocarbons. This study can be contributed for experimental tests.


Author(s):  
Dah Yu Cheng ◽  
Albert L. C. Nelson

It has always been thought by the gas turbine industry that steam injection will shorten the effective life of certain gas turbine parts. Recently it was shown that a number of steam injected Cheng Cycle Rolls-Royce Allison 501KH gas turbines, accumulated more than 2.5 million logged hours of operation and with a prolonged parts life. The “hot parts” of a Rolls-Royce Allison 501KH gas turbine engine that are of concern, are the first stage nozzle, the first stage blade, and the second stage nozzle. These parts are all air cooled through the first stages internal passages. (The second stage blades and on down are not internally cooled.) The concern raised in many gas turbine institutions is that the metal temperatures of these hot parts, due to the heat conductivity properties of injected steam, will make them deteriorate faster. An experiment was completed using a steam injected Cheng Cycle, on an Allison 501KH gas turbine engine. In the experiment, a substantial number of thermocouples were attached to the surfaces of the turbines hot parts. This engine had a steam injection rate of up to 18% airflow. The experimental results showed that if steam could be properly mixed with the cooling air before the air enters into the cooling passages of the hot parts, the metal temperatures did not increase. During the operation of the engines, it was recorded that the hot parts lifetime increased from 25,000 hours before the hot parts section had to be overhauled, to 42,000 hours (on average) before they needed to be overhauled. This paper will report the measurement installation in detail. The results before and after steam injection in the hot parts sections of the Rolls-Royce Allison 501KH engine will also be discussed.


Author(s):  
S. Förster ◽  
M. Kleemann

A compact plate-type recuperative heat exchanger feasible in metal or ceramic materials and suitable for stationary and vehicular gas turbines is described. The flow schemes and fabrication techniques of the heat exchanging matrices are illustrated. Metallic and ceramic prototype matrices are shown which have been fabricated successfully. On the bases of experimental heat transmission and friction data for the metallic matrices, typical design solutions are shown for complete recuperators. Design examples for metallic recuperators are given for large nuclear closed-cycle helium turbine power plants and for stationary and vehicular open-cycle gas turbines. For vehicular application, sizes for turbines of several hundred kilowatts are discussed. Two design examples are given of ceramic recuperators for a 70-kw vehicular gas turbine having small overall dimensions when compared to a piston engine. Some cost aspects of the compact recuperators are discussed. Compact metallic recuperators, such as described in the paper, may replace advantageously the tube type or other plate type recuperators for large stationary and vehicular gas turbine cycle applications. Furthermore, the ceramic compact recuperator also described in the paper may be a satisfying practical solution for small vehicular gas turbines, especially for the so-called “ceramic” gas turbines with gas temperatures at the turbine inlet of about 1300 C.


Author(s):  
Gabriel Blanco ◽  
Lawrence L. Ambs

Steam injection in gas turbines has been used for many years to increase the power output as well as the efficiency of the system and, more recently, to reduce the formation of NOx during the combustion. The major drawback in steam-injected gas turbine technology is the need of large amounts of fresh water that is eventually lost into the atmosphere along with the exhaust gases. Nowadays, fresh water is not readily available in many places due to either local water shortages or environmental legislation that protects water sources from depletion and pollution. In order to deal with water constraints, water recovery systems (WRS) to recuperate the injected steam from the exhaust gases and return it to the steam injection system can be implemented. In this project, computer models for two different WRS configurations have been developed and tested. The computer models allow finding the optimum size, power requirements and capital costs of the heat exchangers involved in a particular WRS configuration. The models can also simulate the performance of WRS during a given period of time, calculating the energy consumed by fans and pumps in the process. This paper explains the details of the computer models and illustrates, as an example, the results obtained when both WRS configurations are applied to the GE LM2500 gas turbine. These results support the technical and economic feasibility of steam recovery for medium-size steam-injected gas turbines.


Sign in / Sign up

Export Citation Format

Share Document