scholarly journals Effect of Rotary Inertia and Gyroscopic Moments on Dynamics of Two Spool Aeroengine Rotor

Author(s):  
K. Gupta ◽  
R. Kumar ◽  
M. Tiwari ◽  
O. Prakash

The main objective of the paper is to study the effect of rotary inertia and gyroscopic moments due to lumped masses on the dynamics of two spool aeroengine rotors. Since the rotary inertia effect is well established, the thrust of the paper is on the effect of gyroscopic moments. Quantitative as well as qualitative aspects are studied. Effect of gyroscopics and rotary inertia on rotor critical speeds and unbalance response are studied for several rotors with particular reference to relative LP and HP rotor speeds. A two spool rig which resembles an actual aeroengine has been designed and built. Experiments have been conducted on two configurations of the rig in order to verify the theoretical results obtained by a formulation developed using the method of extended transfer matrices, for the two spool rotor with two intershaft bearings. A reasonably good correlation between the theoretical and experimental results is observed.

1993 ◽  
Vol 115 (4) ◽  
pp. 427-435 ◽  
Author(s):  
K. Gupta ◽  
K. D. Gupta ◽  
K. Athre

A dual rotor rig is developed and is briefly discussed. The rig is capable of simulating dynamically the two spool aeroengine, though it does not physically resemble the actual aeroengine configuration. Critical speeds, mode shape, and unbalance response are determined experimentally. An extended transfer matrix procedure in complex variables is developed for obtaining unbalance response of dual rotor system. Experimental results obtained are compared with theoretical results and are found to be in reasonable agreement.


Author(s):  
Zhuxin Tian ◽  
Haiyin Cao ◽  
Yu Huang

In the previous studies on the hydrostatic thrust bearing, the differences between the theoretical results and experimental results are obvious when the inertia parameter S and the ratio of supply hole radius to bearing radius r0/ R become large enough. To explain the differences, in this study, the inertia effect on the region of supply hole is considered in discussing the static characteristics of hydrostatic thrust bearing, and then new expressions of pressure, load capacity, and flow rate are given. For the continuous parallel bearing, the results of this study agree well with experiments, thus there is no need for the extra modified inertia theory. For the step bearing with a large inertia parameter (e.g., S = 2), the results of this study agree with experiments on the recess region, and are closer to the experimental results than those of old method on the region of bearing land. So when the inertia parameter S and the ratio of supply hole radius to bearing radius r0/ R are large enough, the inertia effect on the region of supply hole cannot be ignored in discussing the static characteristics of hydrostatic thrust bearing.


1967 ◽  
Vol 89 (3) ◽  
pp. 333-338 ◽  
Author(s):  
F. J. Witt ◽  
R. C. Gwaltney ◽  
R. L. Maxwell ◽  
R. W. Holland

A series of steel models having single nozzles radially and nonradially attached to a spherical shell is presently being examined by means of strain gages. Parameters being studied are nozzle dimensions, length of internal nozzle protrusions, and angles of attachment. The loads are internal pressure and axial thrust and moment loadings on the nozzle. This paper presents both experimental and theoretical results from six of the configurations having radially attached nozzles for which the sphere dimensions are equal and the outside diameter of the attached nozzle is constant. In some instances the nozzle protrudes through the vessel.


2012 ◽  
Vol 79 (4) ◽  
Author(s):  
Ramin M. H. Khorasany ◽  
Stanley G. Hutton

Analysis of the linear vibration characteristics of unconstrained rotating isotropic thin disks leads to the important concept of “critical speeds.” These critical rotational speeds are of interest because they correspond to the situation where a natural frequency of the rotating disk, as measured by a stationary observer, is zero. Such speeds correspond physically to the speeds at which a traveling circumferential wave, of shape corresponding to the mode shape of the natural frequency being considered, travel around the disk in the absence of applied forces. At such speeds, according to linear theory, the blade may respond as a space fixed stationary wave and an applied space fixed dc force may induce a resonant condition in the disk response. Thus, in general, linear theory predicts that for rotating disks, with low levels of damping, large responses may be encountered in the region of the critical speeds due to the application of constant space fixed forces. However, large response invalidates the predictions of linear theory which has neglected the nonlinear stiffness produced by the effect of in-plane forces induced by large displacements. In the present paper, experimental studies were conducted in order to measure the frequency response characteristics of rotating disks both in an idling mode as well as when subjected to a space fixed lateral force. The applied lateral force (produced by an air jet) was such as to produce displacements large enough that non linear geometric effects were important in determining the disk frequencies. Experiments were conducted on thin annular disks of different thickness with the inner radius clamped to the driving arbor and the outer radius free. The results of these experiments are presented with an emphasis on recording the effects of geometric nonlinearities on lateral frequency response. In a companion paper (Khorasany and Hutton, 2010, “Vibration Characteristics of Rotating Thin Disks—Part II: Analytical Predictions,” ASME J. Mech., 79(4), p. 041007), analytical predictions of such disk behavior are presented and compared with the experimental results obtained in this study. The experimental results show that in the case where significant disk displacements are induced by a lateral force, the frequency characteristics are significantly influenced by the magnitude of forced displacements.


2011 ◽  
Vol 320 ◽  
pp. 259-262
Author(s):  
Xu Ran ◽  
Zhe Ming Zhu ◽  
Hao Tang

The mechanical behavior of multi-cracks under compression has become a very important project in the field of fracture mechanics and rock mechanics. In this paper, based on the previous theoretical results of the failure criterion for brittle materials under compression, experiment study is implemented. The specimens are square plates and are made of cement, sand and water, and the cracks are made by using a very thin film (0.1 mm). The relations of material compressive strength versus crack spacing and the lateral confining stress are obtained from experimental results. The experimental results agree well with the failure criterion for brittle materials under compression, which indicates that the criterion is effective and applicable.


1961 ◽  
Vol 83 (2) ◽  
pp. 195-200 ◽  
Author(s):  
S. Cooper

The object of the paper is to indicate the value of theoretical investigations of hydrodynamic finite bearings under steady-state conditions. Methods of solution of Reynolds equation by both desk and digital computing, and methods of stabilizing the processes of solution, are described. The nondimensional data available from the solutions are stated. The outcome of an attempted solution of the energy equation is discussed. A comparison between some theoretical and experimental results is shown. Experimental methods employed and some difficulties encountered are discussed. Some theoretical results are given to indicate the effects of the inclusion of slip velocity, stabilizing slots, and a simple case of whirl.


1985 ◽  
Vol 107 (2) ◽  
pp. 188-195 ◽  
Author(s):  
S. Okabe ◽  
Y. Kamiya ◽  
K. Tsujikado ◽  
Y. Yokoyama

This paper presents the conveying velocity on a vibratory conveyor whose track is vibrated by nonsinusoidal vibration. The velocity wave form of the vibrating track is approximated by six straight lines, and five distortion factors of the wave form are defined. Considering the modes of motion of the particle, the mean conveying velocity is calculated for various conditions. Referring to these results, the optimum wave form is clarified analytically. The theoretical results show that the mean conveying velocity is considerably larger than that of ordinary feeders if the proper conveying conditions are chosen. The theoretical results are confirmed by experimental results.


2011 ◽  
Vol 141 ◽  
pp. 408-412 ◽  
Author(s):  
Yao Bao Yin ◽  
Ling Li

The mechanism of gas cooled or heated through a pneumatic throttle orifice is analyzed. Supposing the total energy of the gas is constant, if the force between the molecules does positive energy, it makes gas heated; if it does negative energy, it makes gas cooled. The conversion temperature of gas is an evaluation parameter for repulsive or attractive force. It has utilized Joule-Thomson coefficient and real gas equation of state to obtain the characteristics of conversion temperature, and the relationships between the molecules distance and the phenomenon of gas cooled or heated after throttle at normal temperature by the conversion characteristics are achieved. The experimental results agreed well with the theoretical results.


Author(s):  
Lyn M. Greenhill ◽  
Valerie J. Lease

Traditional rotor dynamics analysis programs make the assumption that disk components are rigid and can be treated as lumped masses. Several researchers have studied this assumption with specific analytical treatments designed to simulate disk flexibility. The general conclusions reached by these studies indicated disk flexibility has little effect on critical speeds but significantly influences natural frequencies. This apparent contradiction has been reexamined by using axisymmetric harmonic finite elements to directly represent both disk and shaft flexibility along with gyroscopic effects. Results from this improved analysis show that depending on the thickness-to-diameter (slenderness) ratio of the disk and the axial position of the disk on the shaft, there are significant differences in all natural frequencies, for both forward and backward modes, including synchronous crossings at critical speeds.


1987 ◽  
Vol 91 (908) ◽  
pp. 359-366

Summary A surface singularity method has been formulated to predict two-dimensional spoiler characteristics at low speeds. Vorticity singularities are placed on the aerofoil surface, on the spoiler surface, on the upper separation streamline from the spoiler tip and on the lower separation streamline from the aerofoil trailing edge. The separation region is closed downstream by two discrete vortices. The flow inside the separation region is assumed to have uniform total head. The downstream extent of the separated wake is an empirical input. The flows both external and internal to the separated regions are solved. Theoretical results have been obtained for a range of spoiler-aerofoil configurations which compare reasonably with experimental results. The model is deficient in that it predicts a higher compression ahead of the spoiler than obtained in practice. Furthermore, there is a minimum spoiler angle below which a solution is not possible; it is thought that this feature is related to the physical observation that at small spoiler angles, the separated flow from the spoiler reattaches on the aerofoil upper surface ahead of the trailing edge.


Sign in / Sign up

Export Citation Format

Share Document