scholarly journals Swirl Generation and Recirculation Using Radial Swirl Vanes

Author(s):  
John L. Halpin

The concept of the Swirl Number and its effect on recirculation is reviewed and problems with it are identified. Swirl generation through the use of radial inlet swirl vanes is then studied. The effect of vane and swirl cup design on recirculation is then evaluated using finite element computer modeling and verified using tufting tests. Vane geometry, combustor dome geometry, co- vs. counter-rotation and mass flow effects are all evaluated. It is shown that co- and counter-rotation generate very similar flow fields and recirculated mass flows. An approach for calculating swirl numbers in multiple swirler designs is proposed.

2006 ◽  
Vol 129 (2) ◽  
pp. 212-220 ◽  
Author(s):  
Giovanna Barigozzi ◽  
Giuseppe Franchini ◽  
Antonio Perdichizzi

The present paper reports on the aerothermal performance of a nozzle vane cascade, with film-cooled end walls. The coolant is injected through four rows of cylindrical holes with conical expanded exits. Two end-wall geometries with different area ratios have been compared. Tests have been carried out at low speed (M=0.2), with coolant to mainstream mass flow ratio varied in the range 0.5–2.5%. Secondary flow assessment has been performed through three-dimensional (3D) aerodynamic measurements, by means of a miniaturized five-hole probe. Adiabatic effectiveness distributions have been determined by using the wide-band thermochromic liquid crystals technique. For both configurations and for all the blowing conditions, the coolant share among the four rows has been determined. The aerothermal performances of the cooled vane have been analyzed on the basis of secondary flow effects and laterally averaged effectiveness distributions; this analysis was carried out for different coolant mass flow ratios. It was found that the smaller area ratio provides better results in terms of 3D losses and secondary flow effects; the reason is that the higher momentum of the coolant flow is going to better reduce the secondary flow development. The increase of the fan-shaped hole area ratio gives rise to a better coolant lateral spreading, but appreciable improvements of the adiabatic effectiveness were detected only in some regions and for large injection rates.


Author(s):  
Tomohiko Tsukuda ◽  
Toshio Hirano ◽  
Cori Watson ◽  
Neal R. Morgan ◽  
Brian K. Weaver ◽  
...  

Full three-dimensional CFD simulations are carried out using ANSYS CFX to obtain the detailed flow field and to estimate the rotordynamic coefficients of a labyrinth seal for various inlet swirl ratios. Flow fields in the labyrinth seal with the eccentricity of the rotor are observed in detail and the detailed mechanisms that increase the destabilizing forces at high inlet swirl ratios are discussed based on the fluid governing equations associated with the flow fields. By evaluating the contributions from each term of the governing equation to cross coupled force, it is found that circumferential velocity and circumferential distribution of axial mass flow rate play key roles in generating cross coupled forces. In the case that circumferential velocity is high and decreases along the axial direction, all contributions from each term are positive cross coupled force. On the other hand, in the case that circumferential velocity is low and increases along the axial direction, one contribution is positive but the other is negative. Therefore, cross coupled force can be negative in the local chamber depending on the balance even if circumferential velocity is positive. CFD predictions of cross coupled stiffness coefficients and direct damping coefficients show better agreement with experimental results than a bulk flow model does by considering the force on the rotor in the inlet region. Cross coupled stiffness coefficients derived from the force on the rotor in the seal section agree well with those of the bulk flow model.


Author(s):  
J. Paulon ◽  
C. Fradin ◽  
J. Poulain

Industrial pumps are generally used in a wide range of operating conditions from almost zero mass flow to mass flows larger than the design value. It has been often noted that the head-mass flow characteristic, at constant speed, presents a negative bump as the mass flow is somewhat smaller than the design mass flows. Flow and mechanical instabilities appear, which are unsafe for the facility. An experimental study has been undertaken in order to analyze and if possible to palliate these difficulties. A detailed flow analyzis has shown strong three dimensional effects and flow separations. From this better knowledge of the flow field, a particular device was designed and a strong attenuation of the negative bump was obtained.


2021 ◽  
Vol 3 (1) ◽  
pp. 95-105
Author(s):  
T. Makovkina ◽  
◽  
M. Surianinov ◽  
O. Chuchmai ◽  
◽  
...  

Analytical, experimental and numerical results of determination of natural frequencies and forms of oscillations of reinforced concrete and fiber concrete beams are given. Modern analytical, numerical and experimental methods of studying the dynamics of reinforced concrete and fiber concrete beams are analyzed. The problem of determining the natural frequencies and forms of oscillations of reinforced concrete and fiber concrete beams at the initial modulus of elasticity and taking into account the nonlinear diagram of deformation of materials is solved analytically. Computer modeling of the considered constructions in four software complexes is done and the technique of their modal analysis on the basis of the finite element method is developed. Experimental researches of free oscillations of the considered designs and the comparative analysis of all received results are carried out. It is established that all involved complexes determine the imaginary frequency and imaginary form of oscillations. The frequency spectrum calculated by the finite element method is approximately 4% lower than that calculated analytically; the results of the calculation in SOFiSTiK differ by 2% from the results obtained in the PC LIRA; the discrepancy with the experimental data reaches 20%, and all frequencies calculated experimentally, greater than the frequencies calculated analytically or by the finite element method. This rather significant discrepancy is explained, according to the authors, by the incorrectness of the used dynamic model of the reinforced beam. The classical dynamics of structures is known to be based on the theory of linear differential equations, and the oscillations of structures are considered in relation to the unstressed initial state. It is obvious that in the study of free and forced oscillations of reinforced concrete building structures such an approach is unsuitable because they are physically nonlinear systems. The concept of determining the nonlinear terms of these equations is practically not studied. Numerous experimental researches and computer modeling for the purpose of qualitative and quantitative detection of all factors influencing a spectrum of natural frequencies of fluctuations are necessary here.


2004 ◽  
Vol 14 (04) ◽  
pp. 603-618 ◽  
Author(s):  
ADRIAN DUNCA ◽  
VOLKER JOHN

This paper analyzes finite element approximations of space averaged flow fields which are given by filtering, i.e. averaging in space, the solution of the steady state Stokes and Navier–Stokes equations with a differential filter. It is shown that [Formula: see text], the error of the filtered velocity [Formula: see text] and the filtered finite element approximation of the velocity [Formula: see text], converges under certain conditions of higher order than [Formula: see text], the error of the velocity and its finite element approximation. It is also proved that this statement stays true if the L2-error of finite element approximations of [Formula: see text] and [Formula: see text] is considered. Numerical tests in two and three space dimensions support the analytical results.


Author(s):  
M. Gatti ◽  
R. Gaudron ◽  
C. Mirat ◽  
L. Zimmer ◽  
T. Schuller

The frequency response of premixed swirled flames is investigated by comparing their Transfer Function (FTF) between velocity and heat release rate fluctuations. The equivalence ratio and flow velocity are kept constant and four different swirling injectors are tested with increasing swirl numbers. The first injector features a vanishing low swirl number S = 0.20 and produces a flame anchored by the recirculating flow in the wake of a central bluff body. The three other swirling injectors produce highly swirled flows (S > 0.6) leading to a much larger internal recirculation region, which size increases with the swirl level. When operating the burner at S = 0.20, the FTF gain curve smoothly increases to reach a maximum and then smoothly decreases towards zero. For the highly swirled flames (S > 0.6), the FTF gain curve shows a succession of valleys and peaks attributed to interferences between axial and azimuthal velocity fluctuations at the injector outlet. The FTF phase-lag curves from the vanishing low and highly swirled flames are the same at low frequencies despite their large differences in flame length and flame aspect ratio. Deviations between the FTF phase lag curves of the different swirled flames start above the frequency corresponding to the first valley in the FTF gain of the highly swirled flames. Phase averaged images of the axial flow fields and of the flame chemiluminescence are used to interpret these features. At forcing frequencies corresponding to peak FTF gain values, the cold flow response of all flames investigated is dominated by large coherent vortical structures shed from the injector lip. At forcing frequencies corresponding to a valley in the FTF gain curve of the highly swirled flames, the formation of large coherent structures is strongly hindered in the cold flow response. These observations contrast with previous interpretations of the mechanisms associated to the low FTF response of swirled flames. It is finally found that for flames stabilized with a large swirl number, heat release rate fluctuations result both from large flame luminosity oscillations and large flame volume oscillations. For conditions leading to a small FTF gain value, both the flame luminosity and flame volume fluctuations are suppressed confirming the absence of strong perturbations within the flow at these frequencies. The experiments made in this work reveal a purely hydrodynamic mechanism at the origin of the low response of swirling flames at certain specific frequencies.


2010 ◽  
Vol 28 (6) ◽  
pp. E11 ◽  
Author(s):  
Neil R. Crawford ◽  
Jeffery D. Arnett ◽  
Joshua A. Butters ◽  
Lisa A. Ferrara ◽  
Nikhil Kulkarni ◽  
...  

Different methods have been described by numerous investigators for experimentally assessing the kinematics of cervical artificial discs. However, in addition to understanding how artificial discs affect range of motion, it is also clinically relevant to understand how artificial discs affect segmental posture. The purpose of this paper is to describe novel considerations and methods for experimentally assessing cervical spine postural control in the laboratory. These methods, which include mechanical testing, cadaveric testing, and computer modeling studies, are applied in comparing postural biomechanics of a novel postural control arthroplasty (PCA) device versus standard ball-and-socket (BS) and ball-in-trough (BT) arthroplasty devices. The overall body of evidence from this group of tests supports the conclusion that the PCA device does control posture to a particular lordotic position, whereas BS and BT devices move freely through their ranges of motion.


Author(s):  
N. E. Backus ◽  
K. W. Ramsden ◽  
M. K. Yates ◽  
P. Laskaridis ◽  
P. Pilidis

Current fighter engine designs extract power to drive the afterburner fuel pump through the use of a gearbox. The presence of the gearbox only allows the fuel pump to operate at a fixed proportion of engine speed. In addition the fuel pump is continually rotating, although not pumping fuel, even when the afterburner is not engaged. This article investigates the feasibility of using an air turbine to drive the afterburner fuel pump in preparation for supporting an all-electric engine. Utilising performance data for a typical modern military engine, 1-dimensional design techniques were used to design several radial turbines to power the afterburner fuel pump. A choice of an axial or a radial air turbine is possible. Both were reviewed and it was determined that a radial turbine is optimum based on manufacturability and (theoretical) efficiency. Several design iterations were completed to determine the estimated weight and size based on various air off-take locations, mass flows, and rotational speeds. These iterations showed that increasing mass flow allows for lower rotational speeds and/or smaller diameter rotors, but with a corresponding increases in thrust penalties.


Sign in / Sign up

Export Citation Format

Share Document