The Prediction of Laminar Flame Speeds for Weak Mixtures

Author(s):  
D. Kretschmer ◽  
J. Odgers

In a recent publication [3], the authors tentatively explored the prediction of propane flame speeds using the calculated burned gas temperature (Tb) and the predicted flame extinction temperature (Ti). A formula was developed which utilised the above temperatures together with correction factors for inlet temperature and the oxygen/inert ratio. The present paper has extended this technique so that data from 20 different fuels have been examined over a range of conditions which include significant variations of both inlet temperature and pressure. Limitations of the technique are discussed, as are possible related applications to other premixed systems such as laminar flames and well-stirred reactors.

1997 ◽  
Vol 119 (3) ◽  
pp. 566-572 ◽  
Author(s):  
D. Kretschmer ◽  
J. Odgers

In a recent publication [3], the authors tentatively explored the prediction of propane flame speeds using the calculated burned gas temperature (Tb) and the predicted flame extinction temperature (Ti). A formula was developed that utilized these temperatures together with correction factors for inlet temperature and the oxygen/inert ratio. The present paper has extended this technique so that data from 20 different fuels have been examined over a range of conditions, which include significant variations of both inlet temperature and pressure. Limitations of the technique are discussed, as are possible related applications to other premixed systems such as laminar flames and well-stirred reactors.


Author(s):  
Heena V. Panchasara ◽  
Ajay K. Agrawal

In this study the vegetable oil (VO) is preheated to reduce the kinematic viscosity, and thus, improve atomization. A commercial air-blast atomizer is used to produce the VO spray at ambient conditions of temperature and pressure. Characteristics of the resulting spray are measured using a laser sheet visualization system and a Phase Doppler Particle Analyzer system. Experiments are conducted for VO temperatures varying from 40 C to 100 C and air to liquid mass ratio (ALR) of 2.0 and 4.0. Results show a decrease in Sauter Mean Diameter with an increase in VO temperature, regardless of the ALR. Radial profiles show larger droplets migrating towards the edge of the spray and smaller droplets in the interior spray region. Results show a significant difference in distributions of mean and root mean square axial velocity profiles as the VO inlet temperature is increased for a fixed ALR. Higher VO inlet temperature and higher ALR produced a narrower spray with smaller diameter droplets and higher peak axial velocities. Overall, this study has shown that preheating VO improves atomization by producing spray with smaller diameter droplets.


1978 ◽  
Vol 100 (4) ◽  
pp. 640-646 ◽  
Author(s):  
P. Donovan ◽  
T. Cackette

A set of factors which reduces the variability due to ambient conditions of the hydrocarbon, carbon monoxide, and oxides of nitrogen emission indices has been developed. These factors can be used to correct an emission index to reference day ambient conditions. The correction factors, which vary with engine rated pressure ratio for NOx and idle pressure ratio for HC and CO, can be applied to a wide range of current technology gas turbine engines. The factors are a function of only the combustor inlet temperature and ambient humidity.


2011 ◽  
Vol 115 (1164) ◽  
pp. 83-90 ◽  
Author(s):  
W. Bao ◽  
J. Qin ◽  
W. X. Zhou

Abstract A re-cooled cycle has been proposed for a regeneratively cooled scramjet to reduce the hydrogen fuel flow for cooling. Upon the completion of the first cooling, fuel can be used for secondary cooling by transferring the enthalpy from fuel to work. Fuel heat sink (cooling capacity) is thus repeatedly used and fuel heat sink is indirectly increased. Instead of carrying excess fuel for cooling or seeking for any new coolant, the cooling fuel flow is reduced, and fuel onboard is adequate to satisfy the cooling requirement for the whole hypersonic vehicle. A performance model considering flow and heat transfer is build. A model sensitivity study of inlet temperature and pressure reveals that, for given exterior heating condition and cooling panel size, fuel heat sink can be obviously increased at moderate inlet temperature and pressure. Simultaneously the low-temperature heat transfer deterioration and Mach number constrains can also be avoided.


Fuel ◽  
2022 ◽  
Vol 310 ◽  
pp. 122149
Author(s):  
Ryuhei Kanoshima ◽  
Akihiro Hayakawa ◽  
Takahiro Kudo ◽  
Ekenechukwu C. Okafor ◽  
Sophie Colson ◽  
...  

2021 ◽  
Author(s):  
Takashi Nishiumi ◽  
Hirofumi Ohara ◽  
Kotaro Miyauchi ◽  
Sosuke Nakamura ◽  
Toshishige Ai ◽  
...  

Abstract In recent years, MHPS achieved a NET M501J gas turbine combined cycle (GTCC) efficiency in excess of 62% operating at 1,600°C, while maintaining NOx under 25ppm. Taking advantage of our gas turbine combustion design, development and operational experience, retrofits of earlier generation gas turbines have been successfully applied and will be described in this paper. One example of the latest J-Series technologies, a conventional pilot nozzle was changed to a premix type pilot nozzle for low emission. The technology was retrofitted to the existing F-Series gas turbines, which resulted in emission rates of lower than 9ppm NOx(15%O2) while maintaining the same Turbine Inlet Temperature (TIT: Average Gas Temperature at the exit of the transition piece). After performing retrofitting design, high pressure rig tests, the field test prior to commercial operation was conducted on January 2019. This paper describes the Ultra-Low NOx combustor design features, retrofit design, high pressure rig test and verification test results of the upgraded M501F gas turbine. In addition, it describes another upgrade of turbine to improve efficiency and of combustion control system to achieve low emissions. Furthermore it describes the trouble-free upgrade of seven (7) units, which was completed by utilizing MHPS integration capabilities, including handling all the design, construction and service work of the main equipment, plant and control systems.


2005 ◽  
Vol 129 (1) ◽  
pp. 32-43 ◽  
Author(s):  
T. Povey ◽  
K. S. Chana ◽  
T. V. Jones ◽  
J. Hurrion

Pronounced nonuniformities in combustor exit flow temperature (hot-streaks), which arise because of discrete injection of fuel and dilution air jets within the combustor and because of endwall cooling flows, affect both component life and aerodynamics. Because it is very difficult to quantitatively predict the effects of these temperature nonuniformities on the heat transfer rates, designers are forced to budget for hot-streaks in the cooling system design process. Consequently, components are designed for higher working temperatures than the mass-mean gas temperature, and this imposes a significant overall performance penalty. An inadequate cooling budget can lead to reduced component life. An improved understanding of hot-streak migration physics, or robust correlations based on reliable experimental data, would help designers minimize the overhead on cooling flow that is currently a necessity. A number of recent research projects sponsored by a range of industrial gas turbine and aero-engine manufacturers attest to the growing interest in hot-streak physics. This paper presents measurements of surface and endwall heat transfer rate for a high-pressure (HP) nozzle guide vane (NGV) operating as part of a full HP turbine stage in an annular transonic rotating turbine facility. Measurements were conducted with both uniform stage inlet temperature and with two nonuniform temperature profiles. The temperature profiles were nondimensionally similar to profiles measured in an engine. A difference of one-half of an NGV pitch in the circumferential (clocking) position of the hot-streak with respect to the NGV was used to investigate the affect of clocking on the vane surface and endwall heat transfer rate. The vane surface pressure distributions, and the results of a flow-visualization study, which are also given, are used to aid interpretation of the results. The results are compared to two-dimensional predictions conducted using two different boundary layer methods. Experiments were conducted in the Isentropic Light Piston Facility (ILPF) at QinetiQ Farnborough, a short-duration engine-sized turbine facility. Mach number, Reynolds number, and gas-to-wall temperature ratios were correctly modeled. It is believed that the heat transfer measurements presented in this paper are the first of their kind.


2018 ◽  
Vol 190 (8) ◽  
pp. 1472-1487 ◽  
Author(s):  
W. Wang ◽  
A. E. Karataş ◽  
C. P. T. Groth ◽  
Ömer. L. Gülder

Author(s):  
Walter Jury ◽  
Hans K. Luthi

Four key parameters, the 4 S’s, determine the technoeconomical performance of the steam bottoming cycle to a given gasturbine: [S1], the temperature of the heat Source, [S2], the temperature of the heat Sink, [S3] cycle Structure and [S4] component Specifications. The first two are given by the gasturbine exhaust gas temperature (TEX) and ambient water/air temperatures respectively; the last two are designer’s choice but depend on economics: how much can you afford to pay for an extra kW? (parity factor or differential capital outlay). The paper analyses the effect of current trends in the first two S’s on the latter two: «S1», the higher TIT (turbine inlet temperature) of advanced GT’s generally leads to higher TEX, especially when coupled with Sequential Combustion; and [S2]«S2», the trend from fresh water cooling to cooling towers — and again from wet to dry types — due to environmental considerations and/or water shortages leads to higher condenser pressures. These trends change the economics of «S3», the structure (one-, two- or three-pressure, reheat, supercritical etc.); finally, macro-economical trends (fuel cost, cost of capital, more Independent Power Producers or IPP’s) determine «S4», equipment specifications (delta-T’s, delta-P’s, number of stages or exhaust flows etc.). In this written paper the authors report on their technoeconomical analysis; at the conference they will present hands-on solutions, optimized for ABB’s Type GT24 (60Hz, 165 MW) and GT26 (50 Hz, 240 MW) gasturbines. (Note that throughout the paper definite figures are only given for ABB gasturbines and steam turbines, as the authors cannot vouch for information published by other manufacturers or third parties).


Sign in / Sign up

Export Citation Format

Share Document