Computation of 3-D Compressible Flow From a Rectangular Nozzle With Delta Tabs

Author(s):  
Dhanireddy R. Reddy ◽  
Christopher J. Steffen ◽  
Khairul B. M. Q. Zaman

A three-dimensional viscous flow analysis is performed using a time-marching Reynolds-averaged Navier-Stokes code for a 3:1 rectangular nozzle with two delta tabs located at the nozzle exit plane to enhance mixing. Two flow configurations, a subsonic jet case and a supersonic jet case using the same tab configuration which were previously studied experimentally, are computed and compared with the experimental data. The experimental data include streamwise velocity and vorticity distributions for the subsonic case, and Mach number distributions for the supersonic case, at various axial locations downstream of the nozzle exit. The computational results show very good agreement with the experimental data. In addition, the effect of compressibility on vorticity dynamics are examined by comparing the vorticity contours of the subsonic jet case with those of the supersonic jet case which were not measured in the experiment.

1999 ◽  
Vol 121 (2) ◽  
pp. 235-242 ◽  
Author(s):  
D. R. Reddy ◽  
C. J. Steffen ◽  
K. B. M. Q. Zaman

A three-dimensional viscous flow analysis is performed using a time-marching Reynolds-averaged Navier-Stokes code for a 3:1 rectangular nozzle with two delta tabs located at the nozzle exit plane to enhance mixing. Two flow configurations, a subsonic jet case and a supersonic jet case using the same tab configuration, which were previously studied experimentally, are computed and compared with the experimental data. The experimental data include streamwise velocity and vorticity distributions for the subsonic case, and Mach number distributions for the supersonic case, at various axial locations downstream of the nozzle exit. The computational results show very good agreement with the experimental data. In addition, the effect of compressibility on vorticity dynamics is examined by comparing the vorticity contours of the subsonic jet case with those of the supersonic jet case which were not measured in the experiment.


2011 ◽  
Vol 133 (5) ◽  
Author(s):  
F. P. P. Tan ◽  
N. B. Wood ◽  
G. Tabor ◽  
X. Y. Xu

In this study, two different turbulence methodologies are investigated to predict transitional flow in a 75% stenosed axisymmetric experimental arterial model and in a slightly modified version of the model with an eccentric stenosis. Large eddy simulation (LES) and Reynolds-averaged Navier–Stokes (RANS) methods were applied; in the LES simulations eddy viscosity subgrid-scale models were employed (basic and dynamic Smagorinsky) while the RANS method involved the correlation-based transitional version of the hybrid k-ε/k-ω flow model. The RANS simulations used 410,000 and 820,000 element meshes for the axisymmetric and eccentric stenoses, respectively, with y+ less than 2 viscous wall units for the boundary elements, while the LES used 1,200,000 elements with y+ less than 1. Implicit filtering was used for LES, giving an overlap between the resolved and modeled eddies, ensuring accurate treatment of near wall turbulence structures. Flow analysis was carried out in terms of vorticity and eddy viscosity magnitudes, velocity, and turbulence intensity profiles and the results were compared both with established experimental data and with available direct numerical simulations (DNSs) from the literature. The simulation results demonstrated that the dynamic Smagorinsky LES and RANS transitional model predicted fairly comparable velocity and turbulence intensity profiles with the experimental data, although the dynamic Smagorinsky model gave the best overall agreement. The present study demonstrated the power of LES methods, although they were computationally more costly, and added further evidence of the promise of the RANS transition model used here, previously tested in pulsatile flow on a similar model. Both dynamic Smagorinsky LES and the RANS model captured the complex transition phenomena under physiological Reynolds numbers in steady flow, including separation and reattachment. In this respect, LES with dynamic Smagorinsky appeared more successful than DNS in replicating the axisymmetric experimental results, although inflow conditions, which are subject to caveats, may have differed. For the eccentric stenosis, LES with Smagorinsky coefficient of 0.13 gave the closest agreement with DNS despite the known shortcomings of fixed coefficients. The relaminarization as the flow escaped the influence of the stenosis was amply demonstrated in the simulations, graphically so in the case of LES.


2000 ◽  
Author(s):  
B. V. Rathish Kumar ◽  
T. Yamaguchi ◽  
H. Liu ◽  
R. Himeno

Abstract Unsteady flow dynamics in a doubly constricted vessel is analyzed by using a time accurate Finite Volume solution of three dimensional incompressible Navier-Stokes equations. Computational experiments are carried out for various values of Reynolds number in order to assess the criticality of multiple mild constrictions in series and also to bring out the subtle 3D features like vortex formation. Studies reveal that pressure drop across a series of mild constrictions can get physiologically critical. Further this pressure drop is found to be sensitive to the spacing between the constrictions and also to the oscillatory nature of the inflow profile.


Author(s):  
Daniel J. Dorney ◽  
Douglas L. Sondak

Experimental data have shown that combustor temperature non-uniformities can lead to the excessive heating of first-stage rotor blades in turbines. This heating of the rotor blades can lead to thermal fatigue and degrade turbine performance. The results of recent studies have shown that variations in the circumferential location, or clocking, of the first-stage vane airfoils can be used to minimize the adverse effects of the hot streaks due to the hot fluid mixing with the cooler fluid contained in the vane wake. In addition, the effects of the hot streak/airfoil count ratio on the heating patterns of turbine airfoils have been quantified. In the present investigation, three-dimensional unsteady Navier-Stokes simulations have been performed for a single-stage high-pressure turbine geometry operating in high subsonic flow to study the effects of tip clearance on hot streak migration. Baseline simulations were initially performed without hot streaks to compare with the experimental data. Two simulations were then performed with a superimposed combustor hot streak; in the first the tip clearance was set at the experimental value, while in the second the rotor was allowed to scrape along the outer case (i.e., the limit as the tip clearance goes to zero). The predicted results for the baseline simulations show good agreement with the available experimental data. The simulations with the hot streak indicate that the tip clearance increases the radial spreading of the hot fluid, and increases the integrated rotor surface temperature compared to the case without tip clearance.


Author(s):  
Chan-Sol Ahn ◽  
Kwang-Yong Kim

Design optimization of a transonic compressor rotor (NASA rotor 37) using the response surface method and three-dimensional Navier-Stokes analysis has been carried out in this work. The Baldwin-Lomax turbulence model was used in the flow analysis. Three design variables were selected to optimize the stacking line of the blade. Data points for response evaluations were selected by D-optimal design, and linear programming method was used for the optimization on the response surface. As a main result of the optimization, adiabatic efficiency was successfully improved. It was found that the optimization process provides reliable design of a turbomachinery blade with reasonable computing time.


2014 ◽  
Vol 136 (6) ◽  
Author(s):  
B. A. Younis ◽  
A. Abrishamchi

The paper reports on the prediction of the turbulent flow field around a three-dimensional, surface mounted, square-sectioned cylinder at Reynolds numbers in the range 104–105. The effects of turbulence are accounted for in two different ways: by performing large-eddy simulations (LES) with a Smagorinsky model for the subgrid-scale motions and by solving the unsteady form of the Reynolds-averaged Navier–Stokes equations (URANS) together with a turbulence model to determine the resulting Reynolds stresses. The turbulence model used is a two-equation, eddy-viscosity closure that incorporates a term designed to account for the interactions between the organized mean-flow periodicity and the random turbulent motions. Comparisons with experimental data show that the two approaches yield results that are generally comparable and in good accord with the experimental data. The main conclusion of this work is that the URANS approach, which is considerably less demanding in terms of computer resources than LES, can reliably be used for the prediction of unsteady separated flows provided that the effects of organized mean-flow unsteadiness on the turbulence are properly accounted for in the turbulence model.


Author(s):  
Man-Woong Heo ◽  
Tae-Wan Seo ◽  
Chung-Suk Lee ◽  
Kwang-Yong Kim

This paper presents a parametric study to investigate the aerodynamic and aeroacoustic characteristics of a side channel regenerative blower. Flow analysis in the side channel blower was carried out by solving three-dimensional steady and unsteady Reynolds-averaged Navier-Stokes equations with the shear stress transport turbulence closure. Aeroacoustic analysis was conducted by solving the variational formulation of Lighthill’s analogy on the basis of the aerodynamic sources extracted from the unsteady flow analysis. The height and width of the blade and the angle between inlet and outlet ports were selected as three geometric parameters, and their effects on the aerodynamic and aeroacoustic performances of the blower have been investigated. The results showed that the aerodynamic and aeroacoustic performances were enhanced by decreasing height and width of blade. It was found that angle between inlet and outlet ports significantly influences the aerodynamic and aeroacoustic performances of the blower due to the stripper leakage flow.


1990 ◽  
Author(s):  
H. David Joslyn ◽  
Joost J. Brasz ◽  
Robert P. Dring

The ability to acquire blade loadings (surface pressure distributions) and surface flow visualization on an unshrouded centrifugal compressor impeller is demonstrated. Circumferential and streamwise static pressure distributions acquired on the stationary shroud are also presented. Data was acquired in a new facility designed for centrifugal compressor aerodynamic research. Blade loadings calculated with a blade–to–blade potential flow analysis are compared with the measured results. Surface flow visualization reveals some complex aspects of the flow on the surface of the impeller blading and hub. In a companion paper, Dorney and Davis (1990), a state–of–the–art, three–dimensional, time–accurate, Navier Stokes prediction of the flow through the impeller is presented.


Author(s):  
Hayder Schneider ◽  
Dominic von Terzi ◽  
Hans-Jo¨rg Bauer ◽  
Wolfgang Rodi

Reynolds-Averaged Navier-Stokes (RANS) calculations and Large-Eddy Simulations (LES) of the flow in two asymmetric three-dimensional diffusers were performed. The numerical setup was chosen to be in compliance with previous experiments. The aim of the present study is to find the least expensive method to compute reliably and accurately the impact of geometric sensitivity on the flow. RANS calculations fail to predict both the extent and location of the three-dimensional separation bubble. In contrast, LES is able to determine the amount of reverse flow and the pressure coefficient within the accuracy of experimental data.


1999 ◽  
Vol 121 (1) ◽  
pp. 119-126 ◽  
Author(s):  
E. Casartelli ◽  
A. P. Saxer ◽  
G. Gyarmathy

The flow field in a subsonic vaned radial diffuser of a single-stage centrifugal compressor is numerically investigated using a three-dimensional Navier–Stokes solver (TASCflow) and a two-dimensional analysis and inverse-design software package (MISES). The vane geometry is modified in the leading edge area (two-dimensional blade shaping) using MISES, without changing the diffuser throughflow characteristics. An analysis of the two-dimensional and three-dimensional effects of two redesigns on the flow in each of the diffuser subcomponents is performed in terms of static pressure recovery, total pressure loss production, and secondary flow reduction. The computed characteristic lines are compared with measurements, which confirm the improvement obtained by the leading edge redesign in terms of increased pressure rise and operating range.


Sign in / Sign up

Export Citation Format

Share Document