Comparisons Between Measured and Calculated Stall Development in Four High-Speed Multi-Stage Compressors

Author(s):  
A. A. J. Demargne ◽  
J. P. Longley

In this paper the development of rotating stall in four different high-speed multi-stage compressors is investigated using a numerical simulation. Below 90 per cent of design speed the model calculates well the two-dimensional moderate to long lengthscale development of rotating stall, irrespective of the lengthscale and form of the stall inception mechanism. At higher operating speeds the model is less reliable, providing better comparisons for those compressors which exhibited modal rather than spike stall inception. The model is also used to investigate the feasibility of actively controlling the stall development process in a compressor. The conclusions reached are that mass injection and removal is far more effective than varying the blade stagger angles and that sensors must be upstream of actuators.

Author(s):  
Huan Zhang ◽  
Jun Hu ◽  
Baofeng Tu ◽  
Zhiqiang Wang

In the present paper, a nonlinear multi “actuator disk” model is proposed to analyze the dynamic behavior of flow instabilities, including rotating stall and surge, in high speed multistage axial compressors. The model describes the duct flow fields using two dimensional, compressible and unsteady Euler equations, and accounts for the influences of downstream plenum and throttle in the system as well. It replaces each blade row of multistage compressors with a disk. For numerical calculations, the time marching procedure, using MacCormack two steps scheme, is used. The main purpose of this paper is to predict the mechanism of two dimensional short wavelength rotating stall inception, the interaction between blade rows in high speed multistage compressors and the influence of rotating inlet distortion on the stability. It has been demonstrated that the model has the ability to predict those phenomena, and the results show that some system parameters have a strong effect on the stall features as well. Results for a five stage high speed compressor are analyzed in detail, and comparison with the experimental data demonstrates that the model and calculating results are reliable.


Author(s):  
Gavin J. Hendricks ◽  
Jayant S. Sabnis ◽  
Matthew R. Feulner

A nonlinear, two-dimensional, compressible dynamic model has been developed to study rotating stall/surge inception and development in high speed, multi-stage, axial flow compressors. The flow dynamics are represented by the unsteady Euler equations, solved in each interblade row gap and inlet and exit ducts as two-dimensional domains, and in each blade passage as a one-dimensional domain. The resulting equations are solved on a computational grid. The boundary conditions between domains are represented by ideal turning coupled with empirical loss and deviation correlations. Results are presented comparing model simulations to instability inception data of an eleven stage, high pressure ratio compressor operating at part-power, and the results analyzed in the context of linear modal analysis.


Author(s):  
Fangyuan Lou ◽  
John C. Fabian ◽  
Nicole L. Key

The inception and evolution of rotating stall in a high-speed centrifugal compressor are characterized during speed transients. Experiments were performed in the Single Stage Centrifugal Compressor (SSCC) facility at Purdue University and include speed transients from sub-idle to full speed at different throttle settings while collecting transient performance data. Results show a substantial difference in the compressor transient performance for accelerations versus decelerations. This difference is associated with the heat transfer between the flow and the hardware. The heat transfer from the hardware to the flow during the decelerations locates the compressor operating condition closer to the surge line and results in a significant reduction in surge margin during decelerations. Additionally, data were acquired from fast-response pressure transducers along the impeller shroud, in the vaneless space, and along the diffuser passages. Two different patterns of flow instabilities, including mild surge and short-length-scale rotating stall, are observed during the decelerations. The instability starts with a small pressure perturbation at the impeller leading edge and quickly develops into a single-lobe rotating stall burst. The stall cell propagates in the direction opposite of impeller rotation at approximately one third of the rotor speed. The rotating stall bursts are observed in both the impeller and diffuser, with the largest magnitudes near the diffuser throat. Furthermore, the flow instability develops into a continuous high frequency stall and remains in the fully developed stall condition.


2021 ◽  
Author(s):  
E. J. Gunn ◽  
T. Brandvik ◽  
M. J. Wilson ◽  
R. Maxwell

Abstract This paper considers the impact of a damaged leading edge on the stall margin and stall inception mechanisms of a transonic, low pressure ratio fan. The damage takes the form of a squared-off leading edge over the upper half of the blade. Full-annulus, unsteady CFD simulations are used to explain the stall inception mechanisms for the fan at low- and high-speed operating points. A combination of steady and unsteady simulations show that the fan is predicted to be sensitive to leading edge damage at low speed, but insensitive at high speed. This blind prediction aligns well with rig test data. The difference in response is shown to be caused by the change between subsonic and supersonic flow regimes at the leading edge. Where the inlet relative flow is subsonic, rotating stall is initiated by growth and propagation of a subsonic leading edge flow separation. This separation is shown to be triggered at higher mass flow rates when the leading edge is damaged, reducing the stable flow range. Where the inlet relative flow is supersonic, the flow undergoes a supersonic expansion around the leading edge, creating a supersonic flow patch terminated by a shock on the suction surface. Rotating stall is triggered by growth of this separation, which is insensitive to leading edge shape. This creates a marked difference in sensitivity to damage at low- and high-speed operating points.


Author(s):  
T. R. Camp ◽  
I. J. Day

This paper presents a study of stall inception mechanisms a in low-speed axial compressor. Previous work has identified two common flow breakdown sequences, the first associated with a short lengthscale disturbance known as a ‘spike’, and the second with a longer lengthscale disturbance known as a ‘modal oscillation’. In this paper the physical differences between these two mechanisms are illustrated with detailed measurements. Experimental results are also presented which relate the occurrence of the two stalling mechanisms to the operating conditions of the compressor. It is shown that the stability criteria for the two disturbances are different: long lengthscale disturbances are related to a two-dimensional instability of the whole compression system, while short lengthscale disturbances indicate a three-dimensional breakdown of the flow-field associated with high rotor incidence angles. Based on the experimental measurements, a simple model is proposed which explains the type of stall inception pattern observed in a particular compressor. Measurements from a single stage low-speed compressor and from a multistage high-speed compressor are presented in support of the model.


Author(s):  
N. Gourdain ◽  
S. Burguburu ◽  
G. J. Michon ◽  
N. Ouayahya ◽  
F. Leboeuf ◽  
...  

This paper deals with the first instability which occurs in compressors, close to the maximum of pressure rise, called rotating stall. A numerical simulation of these flow phenomena is performed and a comparison with experimental data is made. The configuration used for the simulation is an axial single-stage and low speed compressor (compressor CME2, LEMFI). The whole stage is modeled with a full 3D approach and tip clearance is taken into account. The numerical simulation shows that at least two different mechanisms are involved in the stall inception. The first one leads to a rotating stall with 10 cells and the second one leads to a configuration with only 3 cells. Unsteady signals from the computation are analyzed thanks to a time-frequency spectral analysis. An original model is proposed, in order to predict the spatial and the temporal modes which are the results of the interaction between stall cells and the compressor stage. A comparison with measurements shows that the computed stall inception point corresponds to the experimental limit of stability. The performance of the compressor during rotating stall is also well predicted by the simulation.


Author(s):  
S. E. Gorrell ◽  
P. M. Russler

The stall inception process in high-speed compressor components is important to understand in order to increase stage loading while maintaining stall margin. This paper presents the results of an in depth experimental investigation on the stall inception of a two stage, high-speed, low aspect ratio fan that is representative of current operational commercial and military fan technology. High-response static pressure measurements are presented which detail the stall inception process of the fan under various operating conditions. These conditions include: varied corrected speeds, a smooth case, a circumferential groove casing treatment, and a recirculating cavity casing treatment. Stage pressure characteristics and radial pressure ratio profiles are presented for the different operating conditions. The stage performance data, together with the static pressure data, are analyzed to provide a clear and thorough understanding of the stall inception process and how the process may vary under different conditions. Experimental results show that a stage may stall on the positive, neutral, or negative sloped part of the pressure characteristic. The three casing treatments had a significant effect on the rotor tip flow and these variations changed the stall inception path of the fan. Stall inception was characterized by the formation of a stall inception cell which grew to fully developed rotating stall. Properties affected by the changing tip flow include the stall inception duration, stall inception cell frequency, existence of modal waves, duration of modal waves, and modal wave frequency. In some instances modal waves appear to play a role in stall inception, in others they do not.


1991 ◽  
Vol 113 (2) ◽  
pp. 290-301 ◽  
Author(s):  
V. H. Garnier ◽  
A. H. Epstein ◽  
E. M. Greitzer

Stall inception has been studied in two low-speed compressors (a single-stage and a three-stage) and in a high-speed three-stage compressor, using temporally and spatially resolved measurements. In all three machines, rotating stall was preceded by a period in which small-amplitude waves were observed traveling around the circumference of the machine at a speed slightly less than the fully developed rotating stall cell speed. The waves evolved smoothly into rotating stall without sharp changes in phase or amplitude, implying that, in the machines tested, the prestall waves and the fully developed rotating stall are two stages of the same phenomenon. The growth rate of these disturbances was in accord with that predicted by current analytical models. The prestall waves were observed both with uniform and with distorted inflow, but were most readily discerned with uniform inflow. Engineering uses and limitations of these waves are discussed.


1985 ◽  
Vol 107 (2) ◽  
pp. 191-196
Author(s):  
V. J. Zika

An empirical correlation of rotating stall inception points of elementary compressors (isolated rotors, stages without prerotation, complete single stages, and multi-stage machines with repeating stages), modeled as equivalent diffusers, is presented. From it, two inception criteria for self-induced rotating stall are derived. Compressor blade rows are classified according to a geometric form parameter, (L/A∞)cor, into two groups, subcritical and supercritical. The subcritical geometries stall at a constant kinematic area ratio AE/A∞, in what appears to be a pure rotating stall mode, which occurs before the airfoil stalls. In supercritical geometries, the rotating stall is delayed until it is triggered by the airfoil stall. Thus, for the latter geometries, the airfoil stall and rotating stall are coincident. In contrast to other diffuser-analog methods, the divergence method determines the stall angle and the stalled flow coefficient rather than the stalled pressure rise.


1994 ◽  
Vol 116 (2) ◽  
pp. 216-225 ◽  
Author(s):  
A. G. Wilson ◽  
C. Freeman

This paper describes the phenomenon of stall and surge in an axial flow aeroengine using fast response static pressure measurements from the compressor of a Rolls-Royce VIPER engine. It details the growth of flow instability at various speeds, from a small zone of stalled fluid involving only a few blades into the violent surge motion of the entire machine. Various observations from earlier theoretical and compressor rig results are confirmed by these new engine measurements. The main findings are as follows: (1) The point of stall inception moves rearward as engine speed increases, and is shown to be simply related to the axial matching of the compressor. (2) The final unstable operation of the machine can be divided into rotating stall at low speed and surge or multiple surge at high speed. (3) The inception process is independent of whether the final unstable operation is rotating stall or multiple surge. (4) Stall/surge always starts as a circumferentially small flow disturbance, rotating around the annulus at some fraction of rotor speed.


Sign in / Sign up

Export Citation Format

Share Document