scholarly journals A Gas Turbine Dynamic Model for Simulation and Control

Author(s):  
Horacio Perez-Blanco ◽  
Todd B. Henricks

The useful life of gas turbines and the availability of power after start-up depend on their transient response. For this reason, several articles have been written on the dynamic simulation of gas turbine systems in electrical generation, cogeneration, and marine applications. The simulations typically rely on performance maps and time lags extracted from manufacturer’s specifications. This work was undertaken to increase the generality of turbine models over what can be obtained from performance maps. The paper describes a mathematical computer model developed to investigate the dynamic response of a simple single-shaft gas turbine system. The model uses design parameters normally incorporated in gas turbine design (e.g. load coefficient, flow coefficient, and deHaller Number) as well as compressor and turbine stage geometry and compressor and turbine material properties. A dynamic combustion chamber model is also incorporated. Other input parameters are included to enable the model to be adaptable to various system sizes and environments. The model was formulated in a graphical interface, and the results of several trials are displayed. The influence of important parameters (e.g. fuel-air ratio, IGVs, load, efficiencies) on turbine response from a “cold” start and from steady-state is studied. To gain further insights into the response, a start-up procedure similar to that reported in the literature for an industrial gas turbine system is simulated. Because of the approach used, the computer model is easily adaptable to further improvements and combined simulation of turbines and control systems.

Author(s):  
Cyrus B. Meher-Homji ◽  
Mustapha Chaker ◽  
Andrew F. Bromley

Increased fuel costs have created a strong incentive for gas turbine operators to understand, minimize and control performance deterioration. The most prevalent deterioration problem faced by gas turbine operators is compressor fouling. Fouling causes a drop in airflow, pressure ratio and compressor efficiency, resulting in a “re-matching” of the gas turbine and compressor and a drop in power output and thermal efficiency. This paper addresses the causes and effects of fouling and provides a comprehensive treatment of the impact of salient gas turbine design parameters on the susceptibility and sensitivity to compressor fouling. Simulation analysis of ninety two (92) gas turbines of ranging from a few kW to large engines rated at greater than 300 MW has been conducted. It is hoped that this paper will provide practical information to gas turbine operators.


Author(s):  
Cleverson Bringhenti ◽  
Jesui´no Takachi Tomita ◽  
Francisco de Sousa Ju´nior ◽  
Joa˜o R. Barbosa

Gas turbines need to operate efficiently due to the high specific fuel consumption. In order to reach the best possible efficiency the main gas turbine components, such as compressor and turbine, need to be optimized. This work reports the use of two specially developed computer programs: AFCC [1, 2] and GTAnalysis [3, 4] for such purpose. An axial flow compressor has been designed, using the AFCC computer program based on the stage-stacking technique. Major compressor design parameters are optimized at design point, searching for best efficiency and surge margin. Operation points are calculated and its characteristics maps are generated. The calculated compressor maps are incorporated to the GTAnalysis computer program for the engine performance calculation. Restrictions, like engine complexity, manufacture difficulties and control problems, are not taken into account.


Author(s):  
Tingting Wei ◽  
Dengji Zhou ◽  
Jinwei Chen ◽  
Yaoxin Cui ◽  
Huisheng Zhang

Since the late 1930s, gas turbine has begun to develop rapidly. To improve the economic and safety of gas turbine, new types were generated frequently by Original Equipment Manufacture (OEM). In this paper, a hybrid GRA-SVM prediction model is established to predict the main design parameters of new type gas turbines, based on the combination of Grey Relational Analysis (GRA) and Support Vector Machine (SVM). The parameters are classified into two types, system performance parameters reflecting market demands and technology development, and component performance parameters reflecting technology development and coupling connections. The regularity based on GRA determines the prediction order, then new type gas turbine parameters can be predicted with known system parameters. The model is verified by the application to SGT600. In this way, the evolution rule can be obtained with the development of gas turbine technology, and the improvement potential of several components can be predicted which will provide supports for overall performance design.


Author(s):  
Kishor Kumar ◽  
R. Prathapanayaka ◽  
S. V. Ramana Murthy ◽  
S. Kishore Kumar ◽  
T. M. Ajay Krishna

This paper describes the aerodynamic design and analysis of a high-pressure, single-stage axial flow turbine suitable for small gas turbine engine application using computational methods. The specifications of turbine were based on the need of a typical high-pressure compressor and geometric restrictions of small gas turbine engine. Baseline design parameters such as flow coefficient, stage loading coefficient are close to 0.23 and 1.22 respectively with maximum flow expansion in the NGV rows. In the preliminary design mode, the meanline approach is used to generate the turbine flow path and the design point performance is achieved by considering three blade sections at hub, mean and tip using the AMDC+KO+MK+BSM loss models to meet the design constraints. An average exit swirl angle of less than 5 degrees is achieved leading to minimum losses in the stage. Also, NGV and rotor blade numbers were chosen based on the optimum blade solidity. Blade profile is redesigned using the results from blade-to-blade analysis and through-flow analysis based on an enhanced Dawes BTOB3D flow solver. Using PbCFD (Pushbutton CFD) and commercially available CFD software ANSYS-CFX, aero-thermodynamic parameters like pressure ratios, aerodynamic power, and efficiencies are computed and these results are compared with one another. The boundary conditions, convergence criterion, and turbulence model used in CFD computations are set uniform for comparison with 8 per cent turbulence intensity. Grid independence study is performed at design point to optimize the grid density for off-design performance predictions. ANSYS-CFX and PbCFD have predicted higher efficiency of 3.4% and 1.2% respectively with respect to targeted efficiency of 89 per cent.


Author(s):  
G. K. Conkol ◽  
T. Singh

As vehicles evolve through the concept phase, a wide variety of engines are usually considered. For long-life vehicles such as heavy armored tracked vehicles, gas turbines have been favored because of their weight and volume characteristics at high hp levels (1500 to 2000 hp). Many existing gas turbine engines, however, are undesirable for vehicular use because their original design philosophy was aircraft oriented. In a ground vehicle, mass flow and expense are only two areas in which these engines differ greatly. Because the designer generally is not given the freedom to design an engine from scratch, he must evaluate modifications of the basic Brayton cycle. In this study, various cycles are evaluated by using a design point program in order to optimize design parameters and to recommend a cycle for heavy vehicular use.


1985 ◽  
Vol 22 (01) ◽  
pp. 1-27
Author(s):  
Ralph J. Della Rocca ◽  
John D. Stehn

The need for a gas turbine training facility became apparent with the introduction into the U.S. Navy fleet of the first ships of the FFG7 Frigate and DD963 Destroyer Classes with gas turbine propulsion plants. This facility, constructed at the Great Lakes Naval Training Center, provides "hands-on" training for maintenance and operation of marine gas turbines and associated propulsion plant components and controls and their piping and electrical systems. The Navy intends to train at this facility approximately 1000 personnel per year in the use of their latest and newest propulsion plants. The design of the facility reproduces as closely as possible the existing machinery and control spaces of the two different classes of ships and integrates them into a single main building with the school and the mechanical equipment wings. This paper presents an overview of the need for well-trained, qualified naval personnel to man the expanding fleet of marine gas turbine propulsion systems, existing training facilities and the various stages in the development of the FFG7/DD963 Gas Turbine Maintenance and Operational Training Facility. In regard to the facility, the paper discusses the planning and managing of the project; development of the designs for the building and propulsion plants; construction of the building facilities and FFG7 plant; the fabrication, transportation and erection of the FFG7 within the building; and the testing and operation of the FFG7 plant since light-off. Major emphasis is given to the FFG7 plant since the DD963 plant is being reconsidered in conjunction with the CG47 upgrading and is awaiting a decision to proceed.


2021 ◽  
Author(s):  
Takashi Nishiumi ◽  
Hirofumi Ohara ◽  
Kotaro Miyauchi ◽  
Sosuke Nakamura ◽  
Toshishige Ai ◽  
...  

Abstract In recent years, MHPS achieved a NET M501J gas turbine combined cycle (GTCC) efficiency in excess of 62% operating at 1,600°C, while maintaining NOx under 25ppm. Taking advantage of our gas turbine combustion design, development and operational experience, retrofits of earlier generation gas turbines have been successfully applied and will be described in this paper. One example of the latest J-Series technologies, a conventional pilot nozzle was changed to a premix type pilot nozzle for low emission. The technology was retrofitted to the existing F-Series gas turbines, which resulted in emission rates of lower than 9ppm NOx(15%O2) while maintaining the same Turbine Inlet Temperature (TIT: Average Gas Temperature at the exit of the transition piece). After performing retrofitting design, high pressure rig tests, the field test prior to commercial operation was conducted on January 2019. This paper describes the Ultra-Low NOx combustor design features, retrofit design, high pressure rig test and verification test results of the upgraded M501F gas turbine. In addition, it describes another upgrade of turbine to improve efficiency and of combustion control system to achieve low emissions. Furthermore it describes the trouble-free upgrade of seven (7) units, which was completed by utilizing MHPS integration capabilities, including handling all the design, construction and service work of the main equipment, plant and control systems.


Author(s):  
Joel M. Haynes ◽  
Gavin J. Hendricks ◽  
Alan H. Epstein

A three-stage, low speed axial research compressor has been actively stabilized by damping low amplitude circumferentially travelling waves which can grow into rotating stall. Using a circumferential array of hot wire sensors, and an array of high speed individually positioned control vanes as the actuator, the first and second spatial harmonics of the compressor were stabilized down to a characteristic slope of 0.9, yielding an 8% increase in operating flow range. Stabilization of the third spatial harmonic did not alter the stalling flow coefficient. The actuators were also used open loop to determine the forced response behavior of the compressor. A system identification procedure applied to the forced response data then yielded the compressor transfer function. The Moore-Greitzer, 2-D, stability model was modified as suggested by the measurements to include the effect of blade row time lags on the compressor dynamics. This modified Moore-Greitzer model was then used to predict both the open and closed loop dynamic response of the compressor. The model predictions agreed closely with the experimental results. In particular, the model predicted both the mass flow at stall without control and the design parameters needed by, and the range extension realized from, active control.


Author(s):  
Ralph E. Harris ◽  
Harold R. Simmons ◽  
Anthony J. Smalley ◽  
Richard M. Baldwin ◽  
George Quentin

This paper illustrates how software and hardware for telecommunications and data acquisition enable cost-effective monitoring of peaking gas turbines using personal computers. It describes the design and evaluation of a system which transmits data from each start-up and shutdown over 1,500 miles to a monitoring computer. It presents system structure, interfaces, data content, and management. The system captures transient sequences of acceleration, synchronization, loading, thermal stabilization, steady operation, shutdown and cooldown; it yields coherent sets of speed, load, temperature, journal eccentricity, vibration amplitude, and phase at intervals appropriately spaced in time and speed. The data may be used to characterize and identify operational problems.


Author(s):  
Rodger O. Anderson

The generation of electrical power is a complex matter that is dependent in part both on the anticipated demand and the actual amount of power required on the grid. Therefore, the amount of power being generated varies widely depending on the time of day, day of the week, and atmospheric conditions such as cold spells and heat waves. While the amount of power varies, it is recognized that maximum efficiencies are achieved by operating power generation systems at or near steady state conditions. With this in mind, there has been an increased use of gas turbine systems that may be quickly added online to the grid to provide additional power because gas turbine systems are typically well suited for being brought online quickly to provide spinning reserve or electrical generation. However, gas turbines are recognized as not being as efficient as other plant systems such as large steam plants because the gas turbine is an open cycle system where approximately 60 to 70 percent of the energy is lost as exhaust waste heat energy. One recognized method of increasing gas turbine efficiencies is to add a steam bottoming cycle to the exhaust system. However, these closed cycle systems are costly and they compromise the gas turbine’s quick starting capability. This paper discusses an open bottoming cycle that is simple, cost effective and well suited for peaking power generation service. It not only substantially improves the gas turbine simple cycle plant heat rate, but also provides the opportunity to greatly reduce the NOX emissions levels with the application of a low temperature SCR.


Sign in / Sign up

Export Citation Format

Share Document