Numerical Method for Studying Bearing Gap Pressure Wave Development and Subsequent Performance Mapping of Externally Pressurized Gas Journal Bearings

Author(s):  
Tom M. Lawrence ◽  
Marvin D. Kemple

Abstract In previous work, numerical methods were developed to determine the pressure waves (pressure distribution) in the bearing gap of round externally pressurized gas bearings (EPB’s) that were pressurized through porous liners (PL bearings) or through liners with rows of feedholes (FH bearings). When integrated and differentiated these pressure portraits yield the net hydrodynamic force (FH) between the shaft and the bushing and the mass flow rates through the bearing gap. These results successfully replicated force-deflection curves and mass flow rate data for experimentally tested prototype FH and PL bearings over a wide range of mass flow constriction and clearances. Subsequently the numerical study was expanded to a broader design space of clearance and mass flow compensation. Also, a bearing performance mapping method of mapping the normalized bearing load over the clearance-eccentric deflection plane was developed for different levels of mass compensation. These performance maps produced a very interesting result as they indicated certain areas in the design space of FH bearings where static instability (negative stiffness) would be encountered. This static instability was not observed in the experimental data but is noted in references as known to occur in practice. Because this numerical method is based on the development of pressure wave portraits, the FH pressure wave could then be “dissected” in the areas of the onset of static instability which gave much insight as to the possible causes of static instability. This initial work, then, was perhaps the first to predict where in design space static instability would occur and yield some insight via examination of the corresponding pressure waves as to the cause. The numeric techniques developed, however are in no way limited to non-rotating bearings but are extensible to rotating bearings. The method is also easily extensible to examination of any configuration of feedholes or orifices. Nor is it limited to parallel deflections but can yield results for unbalanced loads. The method is also not limited to round bearings but can be applied to any cross-section configuration of bearing gap cross section such as a 3 lobed bearing or a slotted 3 lobed bearing. Examination of the resulting pressure wave development patterns for different scenarios can be examined to garner insight as to the causes of differing performance that can be applied to alterations towards optimization. Thus sharing in detail the developed numerical method underlying these studies seems worthwhile.

Author(s):  
A. Andreini ◽  
A. Bonini ◽  
G. Caciolli ◽  
B. Facchini ◽  
S. Taddei

Due to the stringent cooling requirements of novel aero-engines combustor liners, a comprehensive understanding of the phenomena concerning the interaction of hot gases with typical coolant jets plays a major role in the design of efficient cooling systems. In this work, an aerodynamic analysis of the effusion cooling system of an aero-engine combustor liner was performed; the aim was the definition of a correlation for the discharge coefficient (CD) of the single effusion hole. The data were taken from a set of CFD RANS (Reynolds-averaged Navier-Stokes) simulations, in which the behavior of the effusion cooling system was investigated over a wide range of thermo/fluid-dynamics conditions. In some of these tests, the influence on the effusion flow of an additional air bleeding port was taken into account, making it possible to analyze its effects on effusion holes CD. An in depth analysis of the numerical data set has pointed out the opportunity of an efficient reduction through the ratio of the annulus and the hole Reynolds numbers: The dependence of the discharge coefficients from this parameter is roughly linear. The correlation was included in an in-house one-dimensional thermo/fluid network solver, and its results were compared with CFD data. An overall good agreement of pressure and mass flow rate distributions was observed. The main source of inaccuracy was observed in the case of relevant air bleed mass flow rates due to the inherent three-dimensional behavior of the flow close to bleed opening. An additional comparison with experimental data was performed in order to improve the confidence in the accuracy of the correlation: Within the validity range of pressure ratios in which the correlation is defined (>1.02), this comparison pointed out a good reliability in the prediction of discharge coefficients. An approach to model air bleeding was then proposed, with the assessment of its impact on liner wall temperature prediction.


1994 ◽  
Vol 116 (1) ◽  
pp. 79-88 ◽  
Author(s):  
G. Enden ◽  
A. S. Popel

Owing in part to a plasma-skimming mechanism, the distribution of red blood cells (RBCs) into branches of microvascular bifurcations typically differs from the distribution of the bulk blood flow. This paper analyzes the plasma-skimming mechanism that causes phase separation due to uneven distribution of red blood cells at the inlet cross section of the parent vessel. In a previous study, the shape of the surface that divides the flow into the branches was found by numerical simulation of three-dimensional flow of a homogeneous Newtonian fluid in T-type bifurcations. Those findings are used in this study to determine, as a first approximation, the side-to-parent vessel RBC flux ratio and discharge hematocrit ratio as a function of corresponding flow ratios. Calculations are based on the assumption that RBCs move along streamlines of a homogeneous Newtonian fluid and are uniformly distributed within a concentric core at the inlet cross section of the parent vessel. The results of our calculations agree well for a wide range of flow parameters with experimental data from in vivo and in vitro studies.


1978 ◽  
Vol 20 (4) ◽  
pp. 229-235 ◽  
Author(s):  
M. A. Ali ◽  
K. F. Gill ◽  
B. W. Imrie

This paper describes an investigation of the reflection characteristics of small-amplitude pressure waves in the presence of steady flow in a duct. A correlation technique employing pseudo-random binary-sequence (p.r.b.s.) pulses is introduced. A theoretical model of the process is presented together with considerations of correlation analysis. The results show agreement between the experimental results and the model; they further indicate that, in the presence of a steady flow component, there is a significant effect on the reflection behaviour of plane pressure waves for a reduction in the area terminating a duct. The experimental technique is effective at very low flow velocities (Mach number = 0·02, Reynolds number = 30 times 103) and establishes a linear relationship between a reflection coefficient and a non-dimensional mass flow number. A reflection coefficient of flow is introduced as an appropriate parameter for such conditions. The procedure could be applied to a wide range of industrial processes to determine flow coefficients of duct elements in situ, to optimize flow processes and to locate leakage flows.


2017 ◽  
Vol 11 (8) ◽  
pp. 79
Author(s):  
Jehad Ahmad Yamin

A theoretical investigation on the pressure wave action of the manifolds of a four-stroke, direct injection (hereinafter referred to as DI), water-cooled, 4-stroke, diesel engine with variable stroke length was carried out.  The study was conducted over wide range of speeds (1000 - 3000 RPM at an increment of 500 RPM) and stroke lengths (130 mm to 210 mm at an increment of 20mm). The compression ratio was kept constant by adjusting the piston bowl volume. The study showed that shorter stroke lengths created favorable pressure waves in both inlet and exhaust manifolds at lower speeds, which resulted in improved engine volumetric and thermal efficiencies. At higher speeds, the larger strokes were favorable, however, due to less time available for the suction and exhaust strokes to be executed, the efficiencies were low. Advancing valve timing was one factor that improved the engine performance with larger stroke lengths.


Author(s):  
Alejandro Castillo Pardo ◽  
Ahad Mehdi ◽  
Vassilios Pachidis ◽  
David G. MacManus

As a result of the new engine design trends, the likelihood of tightly-wound vortices being ingested by the engine rises. Therefore, the risk associated with the ingestion of swirl distortion becomes a major concern. A numerical analysis of the response of a transonic fan stage to the ingestion of different distorted flow patterns is carried out using steady-state CFD. The CFD approach is generated and validated against experimental data for undistorted inlet conditions. Following the validation, a wide range of configurations with vortex flow distortions are analysed and evaluated. The change in global performance is quantified and the flow field is extensively analysed. Consequently, the parameters that have the most critical impact on the performance of the fan stage are identified. The study identifies a close relation between the number of vortices ingested and the change in rotor performance. However, the deviation from the clean rotor performance has been found to be independent of the circumferential distance between vortices. Additionally, the effects of the radial location, polarity and vortex magnitude have been assessed. Ingested co-rotating vortices cause a significant reduction in pressure ratio and corrected mass flow. In contrast, counter-rotating vortices are associated with an increase in the pressure ratio and corrected mass flow. The change in rotor performance increases with the strength. However, a dramatical drop in pressure ratio is observed for counter-rotating vortices when the vortex strength exceeds a critical value.


Author(s):  
A. Andreini ◽  
A. Bonini ◽  
G. Caciolli ◽  
B. Facchini ◽  
S. Taddei

Due to the stringent cooling requirements of novel aeroengines combustor liners, a comprehensive understanding of the phenomena concerning the interaction of hot gases with typical coolant jets plays a major role in the design of efficient cooling systems. In this work an aerodynamic analysis of the effusion cooling system of an aero-engine combustor liner was performed; the aim was the definition of a correlation for the discharge coefficient (CD) of the single effusion hole. The data was taken from a set of CFD RANS simulations, in which the behavior of the effusion cooling system was investigated over a wide range of thermo fluid-dynamics conditions. In some of these tests, the influence on the effusion flow of an additional air bleeding port was taken in account, making possible to analyze its effects on effusion holes CD. An in depth analysis of the numerical data set has pointed out the opportunity of an efficient reduction through the ratio of the annulus and the hole Reynolds numbers: the dependence of the discharge coefficients from this parameter is roughly linear. The correlation was included in an in-house one dimensional thermo-fluid network solver and its results were compared with CFD data. An overall good agreement of pressure and mass flow rates distributions was observed. The main source of inaccuracy was observed in the case of relevant air bleed mass flow rates, due to the inherent three-dimensional behavior of the flow close to bleed opening. An additional comparison with experimental data was performed in order to improve the confidence in the accuracy of the correlation: within the validity range of pressure ratio in which the correlation is defined (> 1.02), this comparison pointed out a good reliability in the prediction of discharge coefficients. An approach to model air bleeding was then proposed, with the assessment of its impact on liner wall temperature prediction.


2011 ◽  
Vol 7 (1) ◽  
pp. 19-26 ◽  
Author(s):  
M. A. Masud ◽  
Md. Rabiul Islam ◽  
Md. Rasel Sheikh ◽  
Mahmud Md. Alam

Numerical study is performed to examine numerically the stable solution for the incompressible viscous steady flow through a curved pipe with circular cross-section. Also the combined effects of high Dean Number Dn and curvature δ on the flow are investigated. Spectral method is applied as a main tool for the numerical technique; where, Fourier series, Chebyshev polynomials, Collocation methods, and Iteration method are used as secondary tools. The flow patterns have been shown graphically for large Dean Numbers and a wide range of curvature, 0.01≤δ≤0.9.Two vortex solutions have been found for secondary flow. Axial velocity has been found to increase with the increase of Dean number and decrease with the increase of curvature. For high Dean number and low curvature almost all the fluid particles leave the inner half of the cross-section. The stable solution zone increases with the increase of curvature up to a certain limit, then decrease.DOI: 10.3329/jname.v7i1.3630


2011 ◽  
Vol 94-96 ◽  
pp. 1733-1736
Author(s):  
Yuan Gui Mei ◽  
Yong Xing Jia

The perforated wall has great effect on pressure waves produced by high-speed train through a tunnel. In this paper the effect is investigated numerically by the method of characteristics based on one-dimensional unsteady compressible non-isentropic flow theory. The numerical method is validated by experimental results of Netherlands NLR. The effect from hole area in perforated wall is investigated principally and the results shows that the pressure wave is alleviated remarkably in tunnel with perforated wall.


2012 ◽  
Vol 9 (1) ◽  
pp. 94-97
Author(s):  
Yu.A. Itkulova

In the present work creeping three-dimensional flows of a viscous liquid in a cylindrical tube and a channel of variable cross-section are studied. A qualitative triangulation of the surface of a cylindrical tube, a smoothed and experimental channel of a variable cross section is constructed. The problem is solved numerically using boundary element method in several modifications for a periodic and non-periodic flows. The obtained numerical results are compared with the analytical solution for the Poiseuille flow.


Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 1022
Author(s):  
Rashid G. Bikbaev ◽  
Ivan V. Timofeev ◽  
Vasiliy F. Shabanov

Optical sensing is one of many promising applications for all-dielectric photonic materials. Herein, we present an analytical and numerical study on the strain-responsive spectral properties of a bioinspired sensor. The sensor structure contains a two-dimensional periodic array of dielectric nanodisks to mimic the optical behavior of grana lamellae inside chloroplasts. To accumulate a noticeable response, we exploit the collective optical mode in grana ensemble. In higher plants, such a mode appears as Wood’s anomaly near the chlorophyll absorption line to control the photosynthesis rate. The resonance is shown persistent against moderate biological disorder and deformation. Under the stretching or compression of a symmetric structure, the mode splits into a couple of polarized modes. The frequency difference is accurately detected. It depends on the stretch coefficient almost linearly providing easy calibration of the strain-sensing device. The sensitivity of the considered structure remains at 5 nm/% in a wide range of strain. The influence of the stretching coefficient on the length of the reciprocal lattice vectors, as well as on the angle between them, is taken into account. This adaptive phenomenon is suggested for sensing applications in biomimetic optical nanomaterials.


Sign in / Sign up

Export Citation Format

Share Document