A Genetic Algorithm Based Method for Product Family Design Optimization

Author(s):  
Brayan S. D’Souza ◽  
Timothy W. Simpson

Increased commonality in a family of products can simplify manufacturing and reduce the associated costs and lead-times. There is a tradeoff, however, between commonality and individual product performance within a product family, and in this paper we introduce a genetic algorithm based method to help find an acceptable balance between commonality in the product family and desired performance of the individual products in the family. The method uses Design of Experiments to help screen unimportant factors and identify factors of interest to the product family and a multiobjective genetic algorithm, the non-dominated sorting genetic algorithm, to optimize the performance of the products in the resulting family. To demonstrate implementation of the proposed method, the design of a family of three General Aviation Aircraft is presented along with a product variety tradeoff study to determine the extent of the tradeoff between commonality and individual product performance within the aircraft family. The efficiency and effectiveness of the proposed method is illustrated by comparing the family of aircraft against individually optimized designs and designs obtained from an alternate gradient-based multiobjective optimization method.

Author(s):  
Carolyn G. Conner ◽  
Joseph P. De Kroon ◽  
Farrokh Mistree

Abstract In this paper we present the Product Variety Tradeoff Evaluation Method for assessment of alternative product platforms in product family design. The Product Variety Tradeoff Evaluation Method is an attention-directing tool for evaluating tradeoffs between commonality and individual product performance for product platform alternatives with differing levels of commonality. We apply the Product Variety Tradeoff Evaluation Method to a case study in transmission redesign for a family of cordless drills. The emphasis in this paper is placed on the method rather than on the results, per se.


Author(s):  
Rafael Araque ◽  
Trevor Bailey ◽  
Murilo W. Bonilha ◽  
Jay Fletcher

This paper discusses a systems framework for platform architecture analysis. The framework considers architectural analysis at three levels; the individual product offerings within a product family, the platform(s) being leveraged across the family, and the evolution potential for the platform/product family. The framework is decomposed into elements that consider a systems perspective: function, form, concepts, interfaces, needs/goals, upstream and downstream influences, and timing/operation. An application of the framework to a transport refrigeration product family is presented as a case study. The results of this case study indicate that the framework is promising, and it continues to be developed and applied within UTC.


Author(s):  
Jessica L. Mulberger ◽  
Timothy W. Simpson

Today’s market is becoming increasingly more competitive as companies strive to achieve success by reaching a large number of customers in a mass market while simultaneously treating them as individuals in a customized market. Many companies have begun to appreciate the benefits of using product platforms as they increase the customizability of their offered products, while reducing development costs and time to market. However, product variety is not customization; it is simply an attempt on the part of a company to meet the individual needs of their customers by flooding the market with many variations of the same product. With recent innovations in the field of information technology, web-based product development methodologies provide the capability for advanced customer involvement during the design process, which is a crucial aspect of differentiating customization from variety. Current approaches have provided web-based frameworks where users are offered a limited amount of control in the design process by assembling different configurations of given modules or by choosing a product already available in the company database. The focus in this paper is on advancements to a web-based framework where design parameters are collected from the user by means of a web-based browser interface, optimization is completed using the specified parameters, and a 3D visual representation is dynamically provided based on the results from the optimization. This proposed framework is illustrated using an example from ongoing research involving General Aviation Aircraft design.


Author(s):  
Gabriel Hernandez ◽  
Janet K. Allen ◽  
Farrokh Mistree

The objective in product platform design is to synthesize a set of components that will be shared by a number of product variants considering potential sacrifices in individual product performance that result from parts sharing. A good platform strategy should allow us to specify different levels of commonality for the various features and components of the product family in order to reduce the impact of commonality on performance. In this paper, we formulate the design of platforms for customizable products as a problem of optimization of access in a geometric space. This approach allows us to develop systematically hierarchic product platforms with multiple levels of commonality. We illustrate the proposed approach with a case example: the design of a product platform for a line of customizable electric motors.


Author(s):  
Kikuo Fujita ◽  
Hirofumi Amaya ◽  
Ryota Akai

Today’s manufacturing has become global at all aspects of marketing, design, production, distribution, etc. While product family design has been an essential viewpoint for meeting with the demand for product variety, its meaning is becoming more broad and complicated with linking product design with issues on market systems, supply chain, etc. This paper calls such a design situation ‘global product family design,’ and firstly characterizes its components and complexity. Following them, this paper develops a mathematical model for the simultaneous decision problem of module commonalization strategies under the given product architecture and supply chain configuration through selection of manufacturing sites for module production, assembly and final distribution as an instance of the problems. This paper demonstrates some numerical case studies for ascertaining the validity and promise of the developed mathematical model with an optimization method configured with a genetic algorithm and a simplex method. Finally, it concludes with some discussion on future works.


2012 ◽  
Vol 594-597 ◽  
pp. 1118-1122 ◽  
Author(s):  
Yong Ming Fu ◽  
Ling Yu

In order to solve the problem on sensor optimization placement in the structural health monitoring (SHM) field, a new sensor optimization method is proposed based on the modal assurance criterion (MAC) and the single parenthood genetic algorithm (SPGA). First, the required sensor numbers are obtained by using the step accumulating method. The SPGA is used to place sensors, in which the binary coding is adopted to realize the genetic manipulation through gene exchange, gene shift and gene inversion. Then, the method is further simplified and improved for higher computation efficiency. Where, neither the individual diversity of initial population nor the immature convergence problem is required. Finally, a numerical example of 61 truss frame structure is used to assess the robustness of the proposed method. The illustrated results show that the new method is better than the improved genetic algorithm and the step accumulating method in the search capacity, computational efficiency and reliability.


2020 ◽  
Vol 142 (10) ◽  
Author(s):  
Gokula Vasantha ◽  
Jonathan Corney ◽  
Struan Stuart ◽  
Andrew Sherlock ◽  
John Quigley ◽  
...  

Abstract Many companies offer a range of related products that are constructed using similar components and processes. This enables them to meet customer expectations of product variety while minimizing the overheads (e.g., development and manufacturing costs). To support the management of product variety several indices have been proposed in the literature that measure the degree to which component use is standardized across products within the same product family. However, the derivation of some of these statistics can be laborious to calculate due to the effort required to assemble the necessary information. In this paper, we develop an index more suited to the automated data-mining of a company’s product portfolio, which is derived from the Kullback–Leibler divergence. The new measure provides an easily computed probabilistic measure that can be used to characterize the degree of component reuse within a single product, across a family of products, and at the individual component family level. To illustrate their applications, the indices and several existing measures are calculated for two contrasting product types; using the non-differentiating components of two flat-pack furniture ranges and the components of a range of bicycles.


Author(s):  
Carolyn Conner Seepersad ◽  
Gabriel Hernandez ◽  
Janet K. Allen

Abstract In many cases, capabilities for providing product variety may be enhanced efficiently and effectively by creating families of products based on product platforms. However, the actual extent of a product platform — the range of products based upon the platform — is usually determined qualitatively. We present a quantitative method for determining the number of scaleable platforms for a specific market as well as the distribution of products among multiple platforms, recognizing that multiple factors determine optimal platform extent and that these factors often conflict. We model these factors quantitatively, at either the systems level or the individual product level, using the compromise Decision Support Problem including concepts derived from linear physical programming. We apply this approach to an example study of a family of absorption chillers. Our emphasis is on the approach rather than the results, per se.


Author(s):  
Xuehong Du ◽  
Mitchell M. Tseng ◽  
Jianxin Jiao

Abstract This paper discusses the issue of product variety modeling, i.e. the means to organize the data of a family of products according to the underpinning logic among them. The targeted product families are characterized by providing user-selectable product features and feature values and achieving variety by combining parameterized functional or physical modules. A graph grammar based (GGB) model is proposed for the purpose of enhancing the comprehensiveness and manipulability of the data of product families for different functional departments in a company in order to facilitate effective order processing as well as direct customer-manufacturer interaction. To deal with variety effectively, both structural and non-structural family data are represented as family graphs whereas order-specific products are represented as variant graphs derived by applying predefined graph rewrite rules to the family graphs. The most important characteristics of the GGB model are three folds. While emphasizing the distinctiveness of the information that different users are concerned about, it provides cross view data transferring mechanisms. It also supports data manipulation for variety generation. Finally, taking advantage of the graph grammar based language of PROGRES, GGB is a model to be easily implemented as a visualized computer system. The specification of an office chair product family illustrates the principles and construction process of GGB models.


Author(s):  
Jaeil Park ◽  
Timothy W. Simpson

Product family design involves carefully balancing the commonality of the product platform with the distinctiveness of the individual products in the family. While a variety of optimization methods have been developed to help designers determine the best design variable settings for the product platform and individual products within the family, production costs are thought to be an important criterion to choose the best platform among candidate platform designs. Thus, it is prerequisite to have an appropriate production cost model to be able to estimate the production costs incurred by having common and variant components within a product family. In this paper, we propose a production cost model based on a production cost framework associated with the manufacturing activities. The production cost model can be easily integrated within optimization frameworks to support a Decision-Based Design approach for product family design. As an example, the production cost model is utilized to estimate the production costs of a family of cordless power screwdrivers.


Sign in / Sign up

Export Citation Format

Share Document