Design of Hierarchic Platforms for Customizable Products

Author(s):  
Gabriel Hernandez ◽  
Janet K. Allen ◽  
Farrokh Mistree

The objective in product platform design is to synthesize a set of components that will be shared by a number of product variants considering potential sacrifices in individual product performance that result from parts sharing. A good platform strategy should allow us to specify different levels of commonality for the various features and components of the product family in order to reduce the impact of commonality on performance. In this paper, we formulate the design of platforms for customizable products as a problem of optimization of access in a geometric space. This approach allows us to develop systematically hierarchic product platforms with multiple levels of commonality. We illustrate the proposed approach with a case example: the design of a product platform for a line of customizable electric motors.


Author(s):  
Carolyn G. Conner ◽  
Joseph P. De Kroon ◽  
Farrokh Mistree

Abstract In this paper we present the Product Variety Tradeoff Evaluation Method for assessment of alternative product platforms in product family design. The Product Variety Tradeoff Evaluation Method is an attention-directing tool for evaluating tradeoffs between commonality and individual product performance for product platform alternatives with differing levels of commonality. We apply the Product Variety Tradeoff Evaluation Method to a case study in transmission redesign for a family of cordless drills. The emphasis in this paper is placed on the method rather than on the results, per se.



Author(s):  
Chad Hume ◽  
David W. Rosen

Product family design strategies based on a common core platform have emerged as an efficient and effective means of providing product variety. The main goal in product platform design is to maximize internal commonality within the family while managing the inherent loss in product performance. Therefore, identification and selection of platform variables is a key aspect when designing a family of products. Based on previous research, the Product Platform Constructal Theory Method (PPCTM) provides a systematic approach for developing customizable products, while allowing for multiple levels of commonality, multiple product specifications, and balancing the tradeoffs between commonality and performance. However, selection of platform variables and the modes for managing product variety are not guided by a systematic process in this method. When developing a platform with more than a few variables, a quantitative method is needed for selecting the optimal platform variable hierarchy. In this paper we present an augmented PPCTM which includes sensitivity analysis of platform variables, such that hierarchical rank is conducted based on the impact of the variables on the product performance. This method is applied to the design of a line of customizable finger pumps.



2002 ◽  
Vol 124 (2) ◽  
pp. 164-172 ◽  
Author(s):  
Achille Messac ◽  
Michael P. Martinez ◽  
Timothy W. Simpson

In an effort to increase customization for today’s highly competitive global markets, many companies are looking to product families to increase product variety and shorten product lead-times while reducing costs. The key to a successful product family is the common product platform around which the product family is derived. Building on our previous work in product family design, we introduce a product family penalty function (PFPF) in this paper to aid in the selection of common and scaling parameters for families of products derived from scalable product platforms. The implementation of the PFPF utilizes the powerful physical programming paradigm to formulate the problem in terms of physically meaningful parameters. To demonstrate the proposed approach, a family of electric motors is developed and compared against previous results. We find that the PFPF enables us to properly balance commonality and performance within the product family through the judicious selection of the common parameters that constitute the product platform and the scaling parameters used to instantiate the product family.



Author(s):  
Alvaro J. Rojas ◽  
Marcos Esterman

In today’s product development environment, most companies develop product platforms rather than individual products due to the time and cost savings that are reaped from subsequent development efforts. Most of the product platform development literature focuses on the development decisions for a product platform while it is under development, which is logically where the biggest benefits would be gained. However when a new market or a new technology arises, firms often struggle to assess these opportunities within the context of their existing product platforms. There is relatively little work that examines the product platform decisions after the platform has been developed and new, unanticipated opportunities are presented to the development organization. The focus of this work is to leverage the existing literature to development an impact assessment process that explicitly accounts for the constraints of a preexisting product platform when considering new technology and/or market opportunities. In this paper, an overview of the overall assessment process is presented. This is followed by the development of the impact metrics and a case study to illustrate the assessment process. The paper concludes with the next step in this work.



Author(s):  
Carolyn Conner Seepersad ◽  
Gabriel Hernandez ◽  
Janet K. Allen

Abstract In many cases, capabilities for providing product variety may be enhanced efficiently and effectively by creating families of products based on product platforms. However, the actual extent of a product platform — the range of products based upon the platform — is usually determined qualitatively. We present a quantitative method for determining the number of scaleable platforms for a specific market as well as the distribution of products among multiple platforms, recognizing that multiple factors determine optimal platform extent and that these factors often conflict. We model these factors quantitatively, at either the systems level or the individual product level, using the compromise Decision Support Problem including concepts derived from linear physical programming. We apply this approach to an example study of a family of absorption chillers. Our emphasis is on the approach rather than the results, per se.



Author(s):  
Rupesh Kumar ◽  
Venkat Allada

Product platform formation has long been considered as an effective method to meet challenges set forth by mass customization. To cater to the changes in customer need driven functional requirements and technological advancements, product platforms have to be robust for a given planning horizon from the manufacturer’s point of view. To date, most of the product platform research is directed towards developing approaches that maximize the usage of common physical structures (such as sub-assemblies and components), amongst product variants. We argue that there is a need to start thinking about platforms at a higher level of abstraction than just at the physical structure level because after all, the physical structures are the end result of the mapping process that starts with the customer needs, cascades to the functional requirements and the behaviors (aka working principle/behavior) that will be used to realize the functions. The Function-Behavior-Structure approach discussed by Gero and Kannengiesser (2003) deals with such an approach. In this paper, we present a methodology called the Function-Behavior Ant Colony Optimization (FB-ACO), to determine a higher abstract level platform at the FB level. The proposed approach can be used to provide critical decisions related to the planning of the advent and egress of a product or the use of a behavior, configuration of the function-behavior platform and the number of such platforms to be considered at a particular time. The FB platform can then be used to develop the detailed design for the family of products under consideration. We demonstrate our proposed approach using the example of a computer mouse product family.



2011 ◽  
Vol 133 (10) ◽  
Author(s):  
Souma Chowdhury ◽  
Achille Messac ◽  
Ritesh A Khire

Development of a family of products that satisfies different market niches introduces significant challenges to today’s manufacturing industries—from development time to aftermarket services. A product family with a common platform paradigm offers a powerful solution to these daunting challenges. This paper presents a new approach, the Comprehensive Product Platform Planning (CP3) framework, to design optimal product platforms. The CP3 framework formulates a generalized mathematical model for the complex platform planning process. This model (i) is independent of the solution strategy, (ii) allows the formation of sub-families of products, (iii) allows the simultaneous identification of platform design variables and the determination of the corresponding variable values, and (iv) seeks to avoid traditional distinctions between modular and scalable product families from the optimization standpoint. The CP3 model yields a mixed integer nonlinear programming problem, which is carefully reformulated to allow for the application of continuous optimization using a novel Platform Segregating Mapping Function (PSMF). The PSMF can be employed using any standard global optimization methodology (hence not restrictive); particle swarm optimization has been used in this paper. A preliminary cost function is developed to represent the cost of a product family as a function of the number of products manufactured and the commonality among these products. The proposed CP3 framework is successfully implemented on a family of universal electric motors. Key observations are made regarding the sensitivity of the optimized product platform to the intended production volume.



Author(s):  
Achille Messac ◽  
Michael P. Martinez ◽  
Timothy W. Simpson

Abstract In an effort to produce more variety for today’s highly competitive market, companies are designing and developing families of products — groups of related products derived from common product platforms — to simultaneously satisfy multiple customer requirements. After reviewing the state of the art in product family and product platform design, we describe the Product Platform Concept Exploration Method (PPCEM) for designing common product platforms that can be scaled or “stretched” into a suitable family of products. This paper extends previous work by the authors through the novel integration of physical programming within the PPCEM to enable the product family design problem to be formulated using physically meaningful terms and preferences. The design of a family of universal electric motors is presented to demonstrate the effectiveness of the proposed approach. Performance gains are achieved in the motor family by utilizing physical programming within the PPCEM when compared to previous results.



Author(s):  
Michael J. Carone ◽  
Christopher B. Williams ◽  
Janet K. Allen ◽  
Farrokh Mistree

Designers develop product platforms when they wish to offer variety to the customer and simultaneously keep costs down to a reasonable level. It has been shown that it is feasible and useful to design hierarchic product platforms for customizable products as a problem of optimization of access in a geometric space, allowing the designer to thoroughly explore a product family’s market space. However, the presence of risk, uncertainty, and tradeoffs, which are inevitable aspects of a real-world design problem, are not considered in this method. We have addressed these limitations through the infusion of utility theory into the multi-stage decision-making process. The proposed approach is illustrated with an example: the design of a product platform for a line of customizable pressure vessels.



Author(s):  
Gwang Kim ◽  
Yunjung Kwon ◽  
Eun Suk Suh ◽  
Jaemyung Ahn

A product family is a set of products that are derived from common sets of parts, interfaces, and processes, known as the product platform. To reduce development time and procurement and operating costs of product platform based variants, the product platform can be designed after consideration of several characteristic, such as modularity, flexibility, sustainability and complexity. In this paper, the product platform is viewed from the perspective of system architecting. The architectural complexities of both the platform and its variants, which together constitute a product family, can be quantitatively assessed using a specifically tailored metric. This will aid system architects in designing product platforms and resulting product variants with an emphasis on reducing complexity. Architectural complexity management is demonstrated through a case study of a train bogie platform.



Sign in / Sign up

Export Citation Format

Share Document