Refined Design of a Measuring Wheel

Author(s):  
Massimiliano Gobbi ◽  
Giorgio Previati ◽  
Giampiero Mastinu

The measurement of the contact forces between road and tires is of fundamental importance while designing road vehicle control systems. In this paper, the detail design of a measuring wheel (smart wheel) for a small two-seater vehicle is presented. The smart wheel concept design is based on a patented three-spoke structure connected to the wheel rim. The spokes are instrumented by means of strain gauges and the smart wheel is able to measure the three forces and the three moments acting at the interface between the tire and the road. The main objective of the design process presented in the paper is improving the sensibility and the accuracy of the measuring system while limiting its mass complying with maximum stress constraints. An iterative process is undertaken by employing both simple (analytical) and complex (finite element) models of the smart wheel to evaluate its performance and the structural stress levels during vehicle running. The complex model includes a finite element model of the tire to accurately apply the loads on the rim while operating. The simple design, the good performance, in terms of accuracy, dynamic behaviour, limited mass and the low cost represent the main features of the designed system.

2014 ◽  
Vol 672-674 ◽  
pp. 1550-1553
Author(s):  
Zhen Guo Shang ◽  
Zhong Chao Ma ◽  
Zhen Sheng Sun

A procedure for obtaining the load distribution in a four point contact wind turbine yaw bearing considering the effect of the structure’s elasticity is presented. The inhomogeneous stiffness of the supporting structures creates a variation in the results obtained with a rigid model. A finite element model substituting the rolling elements with nonlinear compression springs has been built to evaluate the effect of the supporting structure elasticity on the contact forces between the rolling elements and the raceways.


2017 ◽  
Vol 11 (1) ◽  
pp. 1026-1035 ◽  
Author(s):  
Ahmad Basshofi Habieb ◽  
Gabriele Milani ◽  
Tavio Tavio ◽  
Federico Milani

Introduction:An advanced Finite Element model is presented to examine the performance of a low-cost friction based-isolation system in reducing the seismic vulnerability of low-class rural housings. This study, which is mainly numerical, adopts as benchmark an experimental investigation on a single story masonry system eventually isolated at the base and tested on a shaking table in India.Methods:Four friction isolation interfaces, namely, marble-marble, marble-high-density polyethylene, marble-rubber sheet, and marble-geosynthetic were involved. Those interfaces differ for the friction coefficient, which was experimentally obtained through the aforementioned research. The FE model adopted here is based on a macroscopic approach for masonry, which is assumed as an isotropic material exhibiting damage and softening. The Concrete damage plasticity (CDP) model, that is available in standard package of ABAQUS finite element software, is used to determine the non-linear behavior of the house under non-linear dynamic excitation.Results and Conclusion:The results of FE analyses show that the utilization of friction isolation systems could much decrease the acceleration response at roof level, with a very good agreement with the experimental data. It is also found that systems with marble-marble and marble-geosynthetic interfaces reduce the roof acceleration up to 50% comparing to the system without isolation. Another interesting result is that there was little damage appearing in systems with frictional isolation during numerical simulations. Meanwhile, a severe state of damage was clearly visible for the system without isolation.


2011 ◽  
Vol 217-218 ◽  
pp. 1758-1762
Author(s):  
Tao Chang

As the most potential member in the textile composite material, stitched textile composites have already been paid a lot attention. By the simply technology form and relatively low cost, stitched composites had attracted many domestic and foreign researchers, and were gradually used in various engineering practice. This paper using 3D micro-finite element method researches the mechanical behavior and performance of stitched composites, establishing a 3D micro-finite element model for the stitched composites under the improved locking suture way. Through analysis, it shows that each material’s stress distribution characteristics under external loading and finds that the results of this paper’s finite element data results matching well with previous studies’ results, proving the feasibility of this study, so it can be used for forecasting the mechanical properties of a variety of practical stitched composites.


2004 ◽  
Vol 72 (4) ◽  
pp. 570-580 ◽  
Author(s):  
Michael J. Leamy

A perturbation method is presented for use in analyzing unsteady belt-drive operation. The method relies on the important assumption that for operating states close to steady operation, the friction state (i.e., whether the belt is creeping or sticking at any location on the pulley) is similar to that of the well-known steady solution in which a lone stick arc precedes a lone slip arc (Johnson, K. L., 1985, Contact Mechanics, Cambridge U.P., London, Chap. 8; Smith, D. P., 1999, Tribol. Int., 31(8), pp. 465–477). This assumption, however, is not used to determine the friction force distribution, and, in fact, the friction forces in the stick zone are found to be nonzero, in direct contrast to the steady solution. The perturbation analysis is used to derive expressions for the span tensions, the pulley tension distributions, the contact forces between the belt and the pulleys, and the angular velocity of the driven pulleys. Validity criteria are developed which determine bounds on the operation state for which the assumed friction state is upheld. Verification of response quantities from the perturbation solution is accomplished through comparison to quantities predicted by an in-house dynamic finite element model and excellent agreement is found. Additionally, the finite element model is used to verify the key assumption that a lone slip arc precedes a lone stick arc.


Author(s):  
Zekai Ceylan ◽  
Mohamed B. Trabia

Abstract Welded cylindrical containers usually experience stress corrosion cracking (SCC) in the closure-weld area. Induction coil heating technique may be used to relieve the residual stresses from the closure-weld. This technique involves localized heating of the material by the surrounding coils. The material is then cooled to the room temperature by quenching. A two-dimensional axisymmetric finite element model is developed to study the effects of induction coil heating and subsequent quenching. The finite element results are validated through an experimental test. The parameters of the design are tuned to maximize the compressive stress within a layer of thickness from the outer surface that is equal to the long-term general corrosion of Alloy 22 (Appendix A). The problem is subject to geometrical and stress constraints. Two different solution methods are implemented for this purpose. First, an off-the-shelf optimization software is used to obtain an optimum solution. These results are not satisfactory because of the highly nonlinear nature of the problem. The paper proposes a novel alternative: the Successive Heuristic Quadratic Approximation (SHQA) technique. This algorithm combines successive quadratic approximation with an adaptive random search. Examples and discussion are included.


Author(s):  
Mangesh Pathak ◽  
Sourav Rakshit

Abstract The current computation models for gear contact analysis and wear prediction are mostly based on finite element analysis which consumes much computation time and effort. In this work, we adopt an alternative approach for gear contact analysis using linear complementarity. This approach was successfully applied to a pair of rigid spur gears and a planetary gear train (gears are considered as rigid bodies) in our previous work. In this paper, we extend our linear complementarity model to consider local deformation caused due to contact between gear teeth in mesh. Thus obtained linear complementarity model is applied to a pair of spur gears and a planetary gear train. A linear complementarity solver computes the contact forces between meshing teeth of gears. From the contact forces, sliding wear in gear teeth is predicted. Archard’s wear model is used for the wear prediction. Using this model, the contact forces are uniquely determined for the examples considered. The results of linear complementarity and finite element model for a pair of spur gears are compared. The linear complementarity model consumes much less computation time than the finite element model.


Author(s):  
Michaël Martinez ◽  
Sébastien Montalvo

Abstract The mooring of floating platforms is an important challenge for the offshore industry. It is an important part of the design engineering and, often, a critical point for the fatigue life assessment. A solution that could improve the fatigue life is to directly connect the mooring rope to the platform, without an intermediate chain. However this solution is not widespread and the behavior of a rope near such a connection is little known. The present paper proposes to better understand this behavior, thanks to a detailed finite element model of the rope. The study case is a steel wire rope directly connected to a floating wind turbine. A local finite element model of the rope has been built, where the wires are individually modeled with beam elements. One end of the rope is clamped, simulating the connection, while tension and cyclic bending oscillations are applied to the other end. A localized bending takes place near the connection, leading to stress concentration in the wires. The stress concentration and the local contact forces are calculated for each wire. These data are important entry parameters for a local failure or fatigue analysis. This latter is however not presented here. Despite IFPEN experience in the development of local finite element models of steel wire ropes, it is the first time that such a high capacity rope (MBL = 12 500 kN) is modeled. This is challenging because of the large diameter of the rope and the large number of wires. However this modeling approach is very valuable for such ropes, because the experimental tests are rare and very expensive.


2014 ◽  
Vol 553 ◽  
pp. 76-81 ◽  
Author(s):  
Robert S. Pierce ◽  
Brian G. Falzon ◽  
Mark C. Thompson ◽  
Romain Boman

In the pursuit of producing high quality, low-cost composite aircraft structures, out-of-autoclave manufacturing processes for textile reinforcements are being simulated with increasing accuracy. This paper focuses on the continuum-based, finite element modelling of textile composites as they deform during the draping process. A non-orthogonal constitutive model tracks yarn orientations within a material subroutine developed for Abaqus/Explicit, resulting in the realistic determination of fabric shearing and material draw-in. Supplementary material characterisation was experimentally performed in order to define the tensile and non-linear shear behaviour accurately. The validity of the finite element model has been studied through comparison with similar research in the field and the experimental lay-up of carbon fibre textile reinforcement over a tool with double curvature geometry, showing good agreement.


2013 ◽  
Vol 4 (1) ◽  
pp. 167-183 ◽  
Author(s):  
G. Kouroussis ◽  
O. Verlinden

Abstract. The multibody approach is now recognized as a reliable and mature computer aided engineering tool. Namely, it is commonly used in industry for the design of road or railway vehicles. The paper presents a framework developed for predicting the vibrations induced by railway transportation. Firstly, the vehicle/track subsystem is simulated, on the basis of the home-made C++ library EasyDyn, by mixing the multibody model of the vehicle and the finite element model of the track, coupled to each other through the wheel/rail contact forces. Only the motion in the vertical plane is considered, assuming a total symmetry between left and right rails. This first step produces the time history of the forces exerted by the ballast on the foundation, which are then applied to a full 3-D FEM model of the soil, defined under the commercial software ABAQUS. The paper points out the contribution of the pitch motion of the bogies and carbodies which were neglected in previous publications, as well as the interest of the so-called coupled-lumped mass model (CLM) to represent the influence of the foundation in the track model. The potentialities of the model are illustrated on the example of the Thalys high-speed train, riding at 300 km h−1 on the Belgian site of Mévergnies.


Author(s):  
Po-Lin Huang ◽  
Jen-Yuan (James) Chang

Abstract This paper proposes a new concept of piezoelectric actuator. It is different from ordinary piezoelectric actuators which are actuated by friction, and wear becomes a major problem in long-term use. The main purpose of this research is to drive the motor without friction. Hence, the actuator driven by resonance force is proposed here. The foundation of the actuator is based on piezoelectric material which possess the inverse piezoelectric effect itself. The axial deformation of piezoelectric material is worked as excitation here, which makes the stator subjected to mutative equivalent force along the time. At the same time, the input frequency of sinusoidal voltage is controlled and applied to the stators which makes the stators resonated and in contact with motor for pushing the motor forward. In addition to proposing the preliminary design concept of linear piezoelectric actuator, the dynamic model of the piezoelectric actuator system is firstly studied by Hamilton’s Principle. Then, the finite element method is used to calculate the modal analysis of stator. Finally, the prototype is fabricated and experiment platform is established. The vibration response of stators is measured by laser Doppler vibration measuring system, which is able to verify reasonableness of the constructed finite element model and feasibility of linear piezoelectric actuator.


Sign in / Sign up

Export Citation Format

Share Document