Nonlinear Oscillation of Shell Workpiece in High Speed Milling Under 1:2 Internal Resonance Condition

Author(s):  
Wei Zhang ◽  
Rui Zhou ◽  
Jean W. Zu ◽  
Qian Wang

We aim to study nonlinear dynamics of a shell-shaped workpiece during milling processes in this paper. The shell-shaped workpiece is modelled as a cantilever thin shell subjected to a cutting force with time-delay effects. The formulas of the cantilever shell were derived by the classical shell theory and the von Karman strain-displacement relations. The resulting differential equations are reduced to a two-degree-of-freedom nonlinear system ordinary differential equations by applying the Galerkin’s approach. The method of Asymptotic Perturbation method is used to obtain the averaged equations, which were dealt with the resonance cases of 1:2 internal resonance and principal parametric resonance. Dynamic behaviors are presented based on the numerical solutions. The results show that different time-delay parameters result in periodic motion, multiple periodic motion, and chaotic motion.

Author(s):  
Masataka Fukunaga ◽  
Nobuyuki Shimizu

In this paper, a numerical algorithm to solve Caputo differential equations is proposed. The proposed algorithm utilizes the R2 algorithm for fractional integration based on the fact that the Caputo derivative of a function f(t) is defined as the Riemann–Liouville integral of the derivative f(ν)(t). The discretized equations are integer order differential equations, in which the contribution of f(ν)(t) from the past behaves as a time-dependent inhomogeneous term. Therefore, numerical techniques for integer order differential equations can be used to solve these equations. The accuracy of this algorithm is examined by solving linear and nonlinear Caputo differential equations. When large time-steps are necessary to solve fractional differential equations, the high-speed algorithm (HSA) proposed by the present authors (Fukunaga, M., and Shimizu, N., 2013, “A High Speed Algorithm for Computation of Fractional Differentiation and Integration,” Philos. Trans. R. Soc., A, 371(1990), p. 20120152) is employed to reduce the computing time. The introduction of this algorithm does not degrade the accuracy of numerical solutions, if the parameters of HSA are appropriately chosen. Furthermore, it reduces the truncation errors in calculating fractional derivatives by the conventional trapezoidal rule. Thus, the proposed algorithm for Caputo differential equations together with the HSA enables fractional differential equations to be solved with high accuracy and high speed.


Author(s):  
Wei Zhang ◽  
Rui Zhou ◽  
Jean W. Zu ◽  
Qian Wang

In this paper, the nonlinear vibration of a thin-plate workpiece during milling process is investigated. The thin-plate workpiece is modeling as a cantilevered thin plate. The equations of motion for the thin-plate workpiece are derived based on the Kirchhoff-plate theory and the von Karman strain-displacement relations by using the Hamilton’s principle. By applying the Galerkin’s approach, the resulting equations are reduced to a two-degree-of-freedom nonlinear system with external excitations. Considering the case of 1:1 internal resonance, the method of Asymptotic Perturbation method is utilized to obtain the averaged equations of the cantilevered thin-plate workpiece. Numerical method is used to study nonlinear dynamics of the cantilevered thin plate and get the two-dimensional phase portraits, waveforms phase, three-dimensional phase and frequency spectrum phase. The result shows that the cantilevered thin-plate workpiece exhibits the complex dynamic behavior with the increase of the amplitude of the forcing excitation.


2012 ◽  
Vol 22 (05) ◽  
pp. 1250103 ◽  
Author(s):  
W. ZHANG ◽  
X. Y. GUO

An analysis on nonlinear oscillations and chaotic dynamics is presented for a simply-supported symmetric cross-ply composite laminated rectangular thin plate with parametric and forcing excitations in the case of 1:3:3 internal resonance. Based on Reddy's third-order shear deformation plate theory and the von Karman-type equations, the nonlinear governing partial differential equations of motion for the composite laminated rectangular thin plate can be established via the Hamilton's principle. Such partial differential equations are further discretized by the Galerkin method to form a three-degree-of-freedom coupled nonlinear system including the cubic nonlinear terms. The method of multiple scales is then employed to derive a set of averaged equations. Through the stability analysis, the steady-state solutions of the averaged equations are provided. An illustrative case of 1:3:3 internal resonance and fundamental parametric resonance, 1/3 subharmonic resonance is considered. Numerical simulation is applied to investigate the intrinsically nonlinear behavior of the composite laminated rectangular thin plate. With certain external load excitations, the simulation results demonstrate that the nonlinear dynamical system of the composite laminated plate exhibits different kinds of periodic and chaotic motions.


Author(s):  
V. F. Edneral ◽  
O. D. Timofeevskaya

Introduction:The method of resonant normal form is based on reducing a system of nonlinear ordinary differential equations to a simpler form, easier to explore. Moreover, for a number of autonomous nonlinear problems, it is possible to obtain explicit formulas which approximate numerical calculations of families of their periodic solutions. Replacing numerical calculations with their precalculated formulas leads to significant savings in computational time. Similar calculations were made earlier, but their accuracy was insufficient, and their complexity was very high.Purpose:Application of the resonant normal form method and a software package developed for these purposes to fourth-order systems in order to increase the calculation speed.Results:It has been shown that with the help of a single algorithm it is possible to study equations of high orders (4th and higher). Comparing the tabulation of the obtained formulas with the numerical solutions of the corresponding equations shows good quantitative agreement. Moreover, the speed of calculation by prepared approximating formulas is orders of magnitude greater than the numerical calculation speed. The obtained approximations can also be successfully applied to unstable solutions. For example, in the Henon — Heyles system, periodic solutions are surrounded by chaotic solutions and, when numerically integrated, the algorithms are often unstable on them.Practical relevance:The developed approach can be used in the simulation of physical and biological systems.


Symmetry ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 118
Author(s):  
Qingfeng Zhu ◽  
Yufeng Shi ◽  
Jiaqiang Wen ◽  
Hui Zhang

This paper is concerned with a type of time-symmetric stochastic system, namely the so-called forward–backward doubly stochastic differential equations (FBDSDEs), in which the forward equations are delayed doubly stochastic differential equations (SDEs) and the backward equations are anticipated backward doubly SDEs. Under some monotonicity assumptions, the existence and uniqueness of measurable solutions to FBDSDEs are obtained. The future development of many processes depends on both their current state and historical state, and these processes can usually be represented by stochastic differential systems with time delay. Therefore, a class of nonzero sum differential game for doubly stochastic systems with time delay is studied in this paper. A necessary condition for the open-loop Nash equilibrium point of the Pontriagin-type maximum principle are established, and a sufficient condition for the Nash equilibrium point is obtained. Furthermore, the above results are applied to the study of nonzero sum differential games for linear quadratic backward doubly stochastic systems with delay. Based on the solution of FBDSDEs, an explicit expression of Nash equilibrium points for such game problems is established.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Wasim Jamshed ◽  
Mohamed R. Eid ◽  
Kottakkaran Sooppy Nisar ◽  
Nor Ain Azeany Mohd Nasir ◽  
Abhilash Edacherian ◽  
...  

AbstractThe current investigation aims to examine heat transfer as well as entropy generation analysis of Powell-Eyring nanofluid moving over a linearly expandable non-uniform medium. The nanofluid is investigated in terms of heat transport properties subjected to a convectively heated slippery surface. The effect of a magnetic field, porous medium, radiative flux, nanoparticle shapes, viscous dissipative flow, heat source, and Joule heating are also included in this analysis. The modeled equations regarding flow phenomenon are presented in the form of partial-differential equations (PDEs). Keller-box technique is utilized to detect the numerical solutions of modeled equations transformed into ordinary-differential equations (ODEs) via suitable similarity conversions. Two different nanofluids, Copper-methanol (Cu-MeOH) as well as Graphene oxide-methanol (GO-MeOH) have been taken for our study. Substantial results in terms of sundry variables against heat, frictional force, Nusselt number, and entropy production are elaborate graphically. This work’s noteworthy conclusion is that the thermal conductivity in Powell-Eyring phenomena steadily increases in contrast to classical liquid. The system’s entropy escalates in the case of volume fraction of nanoparticles, material parameters, and thermal radiation. The shape factor is more significant and it has a very clear effect on entropy rate in the case of GO-MeOH nanofluid than Cu-MeOH nanofluid.


Sign in / Sign up

Export Citation Format

Share Document