Impact of Requirements Elicitation Activity on Idea Generation: A Designer Study

Author(s):  
Shraddha Joshi ◽  
Joshua D. Summers

This paper presents the findings from an empirical designer study conducted with senior design students to understand the impact of requirement elicitation activity on idea generation. The participants were divided in three groups. The experiment conditions were (1) requirements elicitation (given only problem statement), (2) partial elicitation (given problem and five requirements) and (3) no elicitation (given problem and ten requirements). Participants in the first two conditions were challenged with eliciting requirements first. All participants were also asked to generate solutions. Comparing the requirements addressed in the solutions generated by the participants, it is found that the group that was not primed with the task of eliciting requirements performed better in terms of addressing requirements when compared to other two groups. These findings lead to the inference in conceptual design stage that allowing the students to elicit requirements does not have significant potential benefits while addressing the requirements.

2015 ◽  
Vol 761 ◽  
pp. 63-67 ◽  
Author(s):  
Muhd Ridzuan Mansor ◽  
S.M. Sapuan ◽  
A. Hambali ◽  
Edi Syam Zainudin ◽  
A.A. Nuraini

Spoilers are part of an automotive exterior bodywork system that acts to create additional down force for higher traction. In this paper, a new conceptual design of automotive spoiler component using kenaf polymer composites was developed using integrated TRIZ and morphology chart design method. The aim is to enable direct application of kenaf polymer composites to the spoiler design to achieve better environmental performance of the component while maintaining the required structural strength for safe and functional operation. The overall process involved two major stages, which are the idea generation and concept development. TRIZ method was applied in the idea generation stage where specific solution strategies for the design were created. In the concept development stage, the specific TRIZ solution strategies obtained were later refined into relevant alternative system elements using Morphology chart method. Finally, a new conceptual design of an automotive spoiler was developed using the combination of the identified system elements. The integrated TRIZ and morphology chart method were found to be new tools that can be used effectively in the concept design stage, especially in cases where direct material substitution is given the main focus for the new product development.


2019 ◽  
Vol 91 (6) ◽  
pp. 886-892
Author(s):  
Agnieszka Kwiek

Purpose The purpose of this paper is to present the results of a conceptual design of Martian aircraft. This study focuses on the aerodynamic and longitudinal dynamic stability analysis. The main research questions are as follows: Does a tailless aircraft configuration can be used for Martian aircraft? How to the short period characteristic can be improved by side plates modification? Design/methodology/approach Because of a conceptual design stage of this Martian aircraft, aerodynamic characterises were computed by the Panukl package by using the potential flow model. The longitudinal dynamic stability was computed by MATLAB code, and the derivatives computed by the SDSA software were used as the input data. Different aircraft configurations have been studied, including different wing’s aerofoils and configurations of the side plate. Findings This paper presents results of aerodynamic characteristics computations and longitudinal dynamic stability analysis. This paper shows that tailless aircraft configuration has potential to be used as Martian aircraft. Moreover, the study of the impact of side plates’ configurations on the longitudinal dynamic stability is presented. This investigation reveals that the most effective method to improve the short period damping ratio is to change the height of the bottom plate. Practical implications The presented result might be useful in case of further design of the aircrafts for the Mars mission and designing the aircrafts in a tailless configuration. Social implications It is considered by the human expedition that Mars is the most probable planet to explore. This paper presents the conceptual study of aircraft which can be used to take the high-resolution pictures of the surface of Mars, which can be crucial to find the right place to establish a potential Martian base. Originality/value Most of aircrafts proposed for the Mars mission are designed in a configuration with a classic tail; this paper shows a preliminary calculation of the tailless Martian aircraft. Moreover, this paper shows the results of a dynamic stability analysis, where similar papers about aircrafts for the Mars mission do not show such outcomes, especially in the case of the tailless configuration. Moreover, this paper presents the results of the dynamic stability analysis of tailless aircraft with different configurations of the side plates.


2012 ◽  
Vol 591-593 ◽  
pp. 25-29
Author(s):  
Peng Fei Tian ◽  
Shi Yan ◽  
Bi Ru Li

Selecting the favorable conceptual design scheme is the first step to make a new product development (NPD) successfully. To guarantee reliability and rationality of decision-making about multiple design schemes in conceptual design stage under the impact of uncertainties and qualitative information, we have employed KJ method to cluster the evaluation factors into 5 clusters such as emotion, ergonomics, aesthetics, core technology, and impact; and fuzzy mathematics method to deal with uncertainties and qualitative information effectively. The weights of evaluation factors were calculated by analytical hierarchy process (AHP). Fuzzy mathematics method is the comprehensive evaluation method and quantitative analysis which based on the “maximum membership degree evaluation”. All design schemes are ranked and selected according to the multiple evaluation score of parts with their weights. Finally, a case study for decision-making is presented to demonstrate the application of the evaluation method.


Author(s):  
Domenico Marzullo ◽  
Danilo N. Dongiovanni ◽  
Jeong Ha You

The DEMOnstration Fusion power Plant (DEMO) will be a key step towards Fusion Power Plant technology. It represents the single step to a commercial fusion power plant, in charge of demonstrating the viability of relevant technologies. Indeed, the development of tokamak sub-systems has to take into account interface, structural and functional requirements and multi-physics issues that can be completely known only during the development of the design process. This leads to difficulties to be faced during the conceptual design, mainly related to the identification of the main requirements, the change management and the sub-system integration. The Systems Engineering approach aims to support the design and management of complex systems over their life-cycles, providing a systematic approach for the definition of customer needs and required functionality from the early stage of the design, as well as for the design synthesis and the system validation and verification. Among the tokamak sub-systems, the divertor is the one devoted to power exhaust management and represents, at the same time, one of the most challenging components, in terms of materials, technologies and manufacturing. Current design activities, conducted in the in the framework of EUROfusion Consortium are in a pre-conceptual phase. Despite the early design stage, a systems engineering approach is being applied as an integrated, interdisciplinary R&D effort. The paper therefore presents the modeling effort to the conceptual design of DEMO divertor aimed at identifying both system main functions and expected behavior, given the constraints imposed from either project requirement or from current viability of technological solutions. To allow for flexibility in design needed to explore the feasibility of different solutions at this pre-conceptual stage, the impact of possible changes in high level requirement or interfaces is also investigated. This is also achieved through the allocation of the requirements to the affected components and providing efficient traceability. Therefore, the proposed modelling approach is intended to support the whole divertor conceptual design stage, allowing for requirements identification, traceability and change management.


2021 ◽  
Author(s):  
Akash Patel ◽  
Joshua D. Summers ◽  
Sourabh Karmakar

Abstract The objective of this research is to understand how different representations of requirements influence idea generation in terms of quantity, addressment, sketch detail, novelty, and variety of conceptual sketches. Requirements are statements of need, desires, and wishes of the stakeholders that are used by engineers to frame the problem. Essentially, requirements are the raison d’etre for any engineering project. As the requirements document provides constraints and criteria for a design, it defines and determines the success of a project. While there is research studying the effect of requirements on the conceptual sketch, little study has focused one the impact of different requirement representations on solution development. An experimental study was conducted with 52 fourth year mechanical engineering undergraduate students. Two design problems were formulated with three different representations: a problem statement with embedded requirements, a problem statement and a traditional requirement list, and a problem statement with contextualized scrum stories. Each student was provided each design problems with two different representations of requirements. It was found that the use of contextualized scrum story representations significantly affected the conceptual sketch in the novelty of solution fragments and addressment of requirements, while no significant change in variety, sketch detail, and quantity was seen. Also, the contextualized representation positively affected all metrics but the sketch quantity. Finally, it was found that quantity is not directly related to the number of requirements addressed in the sketches.


2011 ◽  
Vol 115 (1163) ◽  
pp. 15-27 ◽  
Author(s):  
R. M. Ajaj ◽  
G. Allegri ◽  
A. T. Isikveren

Abstract This paper presents a methodology that permits accounting for acoustic fatigue effects when sizing safe-life structural skin-stringer panels at the conceptual design stage of aircraft product development. The approach is based upon estimation of the maximum noise radiated from an entry-into-service year 2020 turbofan. Sonic fatigue endurance is assessed for different skin-stringer panels having different values of skin thickness, rib pitch and stringer pitch. Three different materials were considered in this study: aluminium 2024-T3 alloys (Al 2024-T3); carbon fibre-reinforced plastics (CFRP); and, glass reinforced fibre metal laminate (Hybrid Glare-3). The study resulted in CFRP having the most favourable sonic fatigue performance. In order to link economic considerations into technical decision making, the sonic endurance methods were coupled with an industry grade costing analysis tool (SEER-HTM) to examine the impact of safe-life design on the panel cost and weight. The presented methodology has been shown to be sufficiently generic in nature and robust. This will not only assist in identifying acoustic fatigue as a potential critical design scenario, but will also increase throughput during conceptual design sizing and optimisation.


2006 ◽  
Vol 34 (3) ◽  
pp. 170-194 ◽  
Author(s):  
M. Koishi ◽  
Z. Shida

Abstract Since tires carry out many functions and many of them have tradeoffs, it is important to find the combination of design variables that satisfy well-balanced performance in conceptual design stage. To find a good design of tires is to solve the multi-objective design problems, i.e., inverse problems. However, due to the lack of suitable solution techniques, such problems are converted into a single-objective optimization problem before being solved. Therefore, it is difficult to find the Pareto solutions of multi-objective design problems of tires. Recently, multi-objective evolutionary algorithms have become popular in many fields to find the Pareto solutions. In this paper, we propose a design procedure to solve multi-objective design problems as the comprehensive solver of inverse problems. At first, a multi-objective genetic algorithm (MOGA) is employed to find the Pareto solutions of tire performance, which are in multi-dimensional space of objective functions. Response surface method is also used to evaluate objective functions in the optimization process and can reduce CPU time dramatically. In addition, a self-organizing map (SOM) proposed by Kohonen is used to map Pareto solutions from high-dimensional objective space onto two-dimensional space. Using SOM, design engineers see easily the Pareto solutions of tire performance and can find suitable design plans. The SOM can be considered as an inverse function that defines the relation between Pareto solutions and design variables. To demonstrate the procedure, tire tread design is conducted. The objective of design is to improve uneven wear and wear life for both the front tire and the rear tire of a passenger car. Wear performance is evaluated by finite element analysis (FEA). Response surface is obtained by the design of experiments and FEA. Using both MOGA and SOM, we obtain a map of Pareto solutions. We can find suitable design plans that satisfy well-balanced performance on the map called “multi-performance map.” It helps tire design engineers to make their decision in conceptual design stage.


2017 ◽  
Vol 14 (1) ◽  
pp. 67
Author(s):  
Fadila Mohd Yusof ◽  
Azmir Mamat Nawi ◽  
Azhari Md Hashim ◽  
Ahmad Fazlan Ahmad Zamri ◽  
Abu Hanifa Ab Hamid ◽  
...  

Design development is one of the processes in the teaching and learning of industrial design. This process is important during the early stage of ideas before continuing to the next design stage. This study was conducted to investigate the comparison between  academic  syllabus  and  industry  practices  whether  these  processes  are  highly dependent on the idea generation and interaction related to the designer or to the student itself. The data were gathered through an observation of industry practice during conceptual design phase, teaching and learning process in academic through Video Protocol Analysis (VPA) method and interviews with industry practitioners via structured and unstructured questionnaires. The data were analysed by using NVivo software in order to formulate the results. The findings may possibly contribute to the teaching and learning processes especially in the improvement of industrial design syllabus in order to meet the industry demands. Keywords: design development, industrial design, industry demands


Sign in / Sign up

Export Citation Format

Share Document