Experimental and Analytical Study of Coriolis Effects in Bladed Disk

Author(s):  
Valentina Ruffini ◽  
Christoph Schwingshackl ◽  
Jeff Green

Modern aero-engines have reached a high level of sophistication and only significant changes will lead to the improvements necessary to achieve the economic and environmental targets of the future. Open rotors constitute a major leap in this direction, both in terms of efficiency and of technological innovation. This calls for a revision of the accepted design practices, and a new focus on phenomena that have been little investigated in the past, such as the Coriolis effect, or the gyroscopic coupling of the blades with the shaft. Experimental results from modern fans, with large blades and strong stagger angles, are showing dependence on Coriolis gyroscopic effects already, an effect that is expected to be strongly enhanced with the proposed open rotor designs. For an accurate prediction of the Coriolis and gyroscopic effects in rotating assemblies a fully experimentally validated approach is needed. Today’s FE models can capture the basic physical phenomena, but experimental confirmation is still needed for the evolution of the mode shapes with angular speed, and the influence of damping and geometric nonlinearities when gyroscopic coupling is considered. To support this validation effort a new rotating test rig will be introduced, initial measurement data will be discussed, and a comparison with a finite element analysis presented. Different forcing patterns, including forward and backward travelling-wave engine order excitation could be experimentally excited in the new rig, Coriolis-induced frequency splits were found in the dynamic response, showing a significant change in the dynamic behaviour of the investigated dummy disk, and only a minor impact of the mistuning was observed on the frequency splits due to Coriolis effects. The experimental results have been compared to a finite element analysis, and after some updating a good agreement between the predicted and measured Campbell diagrams could be obtained, demonstrating the reliability of the modelling approach.

1998 ◽  
Vol 26 (2) ◽  
pp. 109-119 ◽  
Author(s):  
M. Koishi ◽  
K. Kabe ◽  
M. Shiratori

Abstract The finite element method has been used widely in tire engineering. Most tire simulations using the finite element method are static analyses, because tires are very complex nonlinear structures. Recently, transient phenomena have been studied with explicit finite element analysis codes. In this paper, the authors demonstrate the feasibility of tire cornering simulation using an explicit finite element code, PAM-SHOCK. First, we propose the cornering simulation using the explicit finite element analysis code. To demonstrate the efficiency of the proposed simulation, computed cornering forces for a 175SR14 tire are compared with experimental results from an MTS Flat-Trac Tire Test System. The computed cornering forces agree well with experimental results. After that, parametric studies are conducted by using the proposed simulation.


2011 ◽  
Vol 287-290 ◽  
pp. 603-607
Author(s):  
Chun Lin Xia ◽  
Yang Fang Wu ◽  
Qian Qian Lu

Using domestic MFSP membrane as a medium of energy conversion, a kind of MFSP actuator was designed. The dedicated test equipment was constructed for experimental research, and the experimental results were given. The strip and circular MSFP membrane were analyzed qualitatively to obtain the deformation characteristics of membrane by finite element analysis software.


Author(s):  
Md Mohiuddin ◽  
Asma Akther ◽  
Eun Byul Jo ◽  
Hyun Chan Kim ◽  
Jaehwan Kim

The present study investigates a film actuator made with dielectric cellulose acetate films separated by narrow spacers as a means of electrostatic actuation for potential haptic application. Fabrication process for the actuator is explained along with experiments conducted over a wide frequency range of actuation frequency. A valid finite element simulation of the actuator is made on the quarter section of the actuator by using full 3D finite elements. Vibration characteristics such as fundamental natural frequency, mode shape and output velocity in the frequency range for haptic feeling generation are obtained from the finite element analysis and compared with the experimental results. Experimental results demonstrate that the finite element model is practical and effective enough in predicting the vibration characteristics of the actuator for haptic application. The film actuator shows many promising properties like high transparency, wide range of actuation frequency and high vibration velocity for instance.


Author(s):  
Ajay Garg

Abstract In high pressure applications, rectangular blocks of steel are used instead of cylinders as pressure vessels. Bores are drilled in these blocks for fluid flow. Intersecting bores with axes normal to each other and of almost equal diameters, produce stresses which can be many times higher than the internal pressure. Experimental results for the magnitude of maximum tensile stress along the intersection contour were available. A parametric finite element model simulated the experimental set up, followed by correlation between finite element analysis and experimental results. Finally, empirical methods are applied to generate models for the maximum tensile stress σ11 at cross bores of open and close ended blocks. Results from finite element analysis and empirical methods are further matched. Design optimization of cross bores is discussed.


2019 ◽  
Vol 44 (1) ◽  
pp. 49-59
Author(s):  
Nilesh Chandgude ◽  
Nitin Gadhave ◽  
Ganesh Taware ◽  
Nitin Patil

In this article, three small wind turbine blades of different materials were manufactured. Finite element analysis was carried out using finite element software ANSYS 14.5 on modeled blades of National Advisory Committee for Aeronautics 4412 airfoil profile. From finite element analysis, first, two flap-wise natural frequencies and mode shapes of three different blades are obtained. Experimental vibration analysis of manufactured blades was carried out using fast Fourier transform analyzer to find the first two flap-wise natural frequencies. Finally, the results obtained from the finite element analysis and experimental test of three blades are compared. Based on vibration analysis, we found that the natural frequency of glass fiber reinforced plastic blade reinforced with aluminum sheet metal (small) strips increases compared with the remaining blades. An increase in the natural frequency indicates an increase in the stiffness of blade.


2014 ◽  
Vol 580-583 ◽  
pp. 2134-2140
Author(s):  
Jian Zhang ◽  
Jian Feng Zhai ◽  
Xian Mei Wang ◽  
Jie Chen

Two-Dimensional finite element analysis was used to investigate the performance of seawall construction over weak subgrade soil using artificial base layer material consisted of cemented sand cushion comprising geosynthetics materials. Two types of base layer materials pure sand and cemented sand comprising husk rich ash and two types of geosynthetics materials geogrid and geotextile were used. Constitutive models were used to represent different materials in numerical analysis. The competence of two-dimensional numerical analysis was compared with experimental results. Numerical results showed a superior harmony with the experimental results. Finite element analysis model proved to be a great tool to determine the parameters that are difficult to measure in laboratory experiments. In addition, finite element analysis has the benefit of cost and time saving when compared to experimental investigation work. Numerical results showed strain induced in geosynthetics eliminated beyond a distance approximately equal six times of footing width.


2013 ◽  
Vol 284-287 ◽  
pp. 1831-1835
Author(s):  
Wei Hsin Gau ◽  
Kun Nan Chen ◽  
Yunn Lin Hwang

In this paper, two experimental techniques, Electronic Speckle Pattern Interferometry and Stroboscopic Interferometry, and two different finite element analysis packages are used to measure or to analyze the frequencies and mode shapes of a micromachined, cross-shaped torsion structure. Four sets of modal data are compared and shown having a significant discrepancy in their frequency values, although their mode shapes are quite consistent. Inconsistency in the frequency results due to erroneous inputs of geometrical and material parameters to the finite element analysis can be salvaged by applying the finite element model updating procedure. Two updating cases show that the optimization sequences converge quickly and significant improvements in frequency prediction are achieved. With the inclusion of the thickness parameter, the second case yields a maximum of under 0.4% in frequency difference, and all parameters attain more reliable updated values.


1999 ◽  
Vol 121 (4) ◽  
pp. 984-988 ◽  
Author(s):  
Alex Y. Tsay ◽  
Jin-Hui Ouyang ◽  
C.-P. Roger Ku ◽  
I. Y. Shen ◽  
David Kuo

This paper studies natural frequencies and mode shapes of a glide head with a piezoelectric transducer (PZT) through calibrated experiments and a finite element analysis. In the experiments, the PZT transducer served as an actuator exciting the glide head from 100 kHz to 1.3 MHz, and a laser Doppler vibrometer (LDV) measured displacement of the glide head at the inner or outer rail. The natural frequencies were measured through PZT impedance and frequency response functions from PZT to LDV. In the finite element analysis, the glide head was meshed by brick elements. The finite element results show that there are two types of vibration modes: slider modes and PZT modes. Only the slider modes are important to glide head applications. Moreover, natural frequencies predicted from the finite element analysis agree well with the experimental results within 5% of error. Finally, the finite element analysis identifies four critical slider dimensions whose tolerance will significantly vary the natural frequencies: PZT bonding length, wing thickness, slider thickness, and air bearing recess depth.


1980 ◽  
Vol 47 (2) ◽  
pp. 377-382 ◽  
Author(s):  
K. Miya ◽  
T. Takagi ◽  
Y. Ando

Some corrections have been made hitherto to explain the great discrepancy between experimental and theoretical values of the magnetoelastic buckling field of a ferromagnetic beam plate. To solve this problem, the finite-element method was applied. A magnetic field and buckling equations of the ferromagnetic beam plate finite in size were solved numerically assuming that the magnetic torque is proportional to the rotation of the plate and by using a disturbed magnetic torque deduced by Moon. Numerical and experimental results agree well with each other within 25 percent.


2018 ◽  
Vol 32 (19) ◽  
pp. 1840043
Author(s):  
J. O. Yu ◽  
Y. H. Kim ◽  
Nagamachi Takuo

To eliminate the complexity of curvature extrusion process, a new extrusion method was proposed. In this study, a finite element analysis for curvature extrusion was studied to commercialize this extrusion method that creates curvature in a tilting method. When simulating an extrusion process, it is important to fix the appropriate friction coefficient and fillet value to avoid peel-out problems such that the finite element disappears. Therefore, the actual extrusion results and the simulated results were compared to find conditions that the element would not disappear. There was a good agreement between the simulation and experimental results when the coefficient friction was 0.4 and the fillet was 0.4 mm.


Sign in / Sign up

Export Citation Format

Share Document