Stochastic Model Bias Correction of Dynamic System Responses for Simulation-Based Reliability Analysis

Author(s):  
Zhimin Xi ◽  
Hao Pan ◽  
Ren-Jye Yang

Reliability analysis based on the simulation model could be wrong if the simulation model were not validated. Various model bias correction approaches have been developed to improve the model credibility by adding the identified model bias to the baseline simulation model. However, little research has been conducted for simulation models with dynamic system responses. This paper presents such a framework for model bias correction of dynamic system responses for reliability analysis by addressing three technical components including: i) a validation metric for dynamic system responses, ii) an effective approach for dynamic model bias calibration and approximation, and iii) reliability analysis considering the dynamic model bias. Two case studies including a thermal problem and a corroded beam problem are employed to demonstrate the proposed approaches for simulation-based reliability analysis.

2014 ◽  
Vol 6 ◽  
pp. 921720 ◽  
Author(s):  
Jing Lu ◽  
Zhonglai Wang ◽  
Wei Chen ◽  
Xuefei Zhang ◽  
Hao Liu

Dynamic reliability analysis of a filtering reducer is performed by accounting for discrete shocks from the space environment. Gears are considered as the lumped mass and meanwhile the meshing between different gears is equivalent to a dynamic system consisting of springs and dampers during construction of the dynamic model. The Newmark method is employed to resolve differential equations, and then the additional acceleration could be obtained, caused by shocks to the filtering reducer. Dynamic reliability analysis is conducted with the help of the Simulink tool for the outputs. The results are hopefully useful for spacecraft mechanism design.


2018 ◽  
Vol 18 (2) ◽  
pp. 41-69 ◽  
Author(s):  
Juan Camilo Paz ◽  
David Rozenboim ◽  
Álvaro Cuadros ◽  
Sandra Cano ◽  
John Escobar

This paper tackles the problem of scheduling construction projects considering the influence of delay risks. In the actual body of knowledge, several methods have been proposed to handle this problem, starting from the Project Evaluation and Review Technique to advanced simulation models. However, this investigation proposes a novel integration of one methodology with some approaches already existing in the literature related to Monte Carlo Simulation scheduling techniques as seen from the perspective of a practitioner. The research began with a literature review of both schedule risks and Monte Carlo based scheduling models for construction projects. Based on this, the methodology was designed with the constant participation of experts in the construction industry. As result of this, a comprehensive and practical methodology was constructed. Therefore, a new mathematical structure for the simulation model within the methodology was formulated in which a new concept for each risk defined as “potential impact” was used. Moreover, the simulation model is based on the judgment of experts and methods of the known literature such as the explicit model of the occurrence probability of the risks and the activity-risk factor matrix. Then, to validate the tool, the proposed methodology was applied using the information of an already constructed construction project of a public university of Colombia. The obtained results were a confidence-based forecast of the end date of the project and a quantitative importance measure of the modelled risks. These results were compared against the real history of the project since it was found an excellent performance of the proposed methodology. To sum up, the research process described above supports the validity of the proposed methodology.


2019 ◽  
Vol 49 (3) ◽  
pp. 187-192
Author(s):  
Juan David CANO-MORENO ◽  
José María CABANELLAS BECERRA

Today’s escalator mechanical systems are based on 100-year-old conventional designs. A sustainable innovation is possible but the industrial inertia of making a prototype for each design has to be changed. This document describes a methodological approach for comparing and validating simulation models through measurements performed on a prototype of a recently patented design. The methodology is based in the adjustment of parameters and the synchronization of cyclic signals in time, allowing the comparison of measurements and simulated outputs. Results shows a high level of correlation between the signals in the time and frequency domains, thus validating the dynamic model and the methodology here presented.


2017 ◽  
Vol 159 (A4) ◽  
Author(s):  
P A Sarvari ◽  
E Cevikcan

There are many hazards on a ship that makes an emergency evacuation process inevitable. Providing safe and effective evacuation of passengers from ships in an emergency situation becomes critical. Handling a real ship evacuation practice is often unaffordable as modelling such an environment is very expensive and may cause severe distress to participants. As an alternative, simulation models have been used to overwhelm the issue above in recent years. Therefore, this paper proposes a novel simulation-based methodology for evaluating the effect of factors including physical as well as psychological passenger characteristics and routeing systematic on emergency evacuation process for public marine transportation. A detailed questionnaire has been conducted in this work to reflect passenger characteristics on simulation model in a more realistic manner. Also, a new routeing systematic is developed to provide an efficient evacuation procedure. As another contribution, a novel grid-based approach where the meshed discretized nodes can contain more than one passenger is proposed in simulation model for the first time. Then, a statistical analysis is included within the methodology to assess the importance level of each factor on evacuation time. The proposed methodology is applied to a real life Ro-Ro ferry. A validation protocol based on IMO regulations is conducted and confirmed the effectiveness of the suggested simulation model. The simulation of different scenario types have indicated the influencing factors in a ship emergency evacuation. According to results, passenger characteristics has been identified as the most dominant factor on evacuation performance. The highest evacuation time difference has been observed for different levels of weight attribute. Moreover, it is concluded that the consideration of load utilization balancing among evacuation systems for routeing decreases evacuation time significantly. Finally, significant evacuation time difference between grid approaches have been demonstrated.


2019 ◽  
Vol 141 (5) ◽  
Author(s):  
Mingyang Li ◽  
Zequn Wang

To account for the model bias in reliability analysis, various methods have been developed to validate simulation models using precise experimental data. However, it still lacks a strategy to actively seek critical information from both sources for effective uncertainty reduction. This paper presents an active resource allocation approach (ARA) to improve the accuracy of reliability approximations while reducing the computational, and more importantly, experimental costs. In ARA, the Gaussian process (GP) modeling technique is employed to fuse both simulation and experimental data for capturing the model bias, and further predicting actual system responses. To manage the uncertainty due to the lack of data, a two-phase updating strategy is developed to improve the fidelity of GP models by actively collecting the most valuable simulation and experimental data. With the high-fidelity predictive models, sampling-based methods such as Monte Carlo simulation are used to calculate the reliability accurately while the overall costs of conducting simulations and experiments can be significantly reduced. The effectiveness of the proposed approach is demonstrated through four case studies.


Author(s):  
Heikki Nikula ◽  
Seppo Sierla ◽  
Bryan O'Halloran ◽  
Tommi Karhela

Simulation-based methods are emerging to address the challenges of complex systems risk assessment, and this paper identifies two problems related to the use of such methods. First, the methods cannot identify new hazards if the simulation model builders are expected to foresee the hazards and incorporate the abnormal behavior related to the hazard into the simulation model. Therefore, this paper uses the concept of deviation from design intent to systematically capture abnormal conditions that may lead to component failures, hazards, or both. Second, simulation-based risk assessment methods should explicitly consider what expertise is required from the experts that build and use the simulation models—the transfer of the methods to real engineering practice will be severely hindered if they must be performed by persons that are expert in domain safety as well as advanced computer simulation-based methods. This paper addresses both problems in the context of the functional failure identification and propagation (FFIP) method. One industrially established risk assessment method, hazard and operability study (HAZOP), is harnessed to systematically obtain the deviations from design intent in the application under study. An information system presents a user interface that is understandable to HAZOP professionals, so that their inputs are transparently entered to a data model that captures the deviations. From the data model, instructions for configuring FFIP simulation models are printed in a form that is understandable for FFIP experts. The method is demonstrated for discovering a hazard resulting from system-wide fault propagation in a boiling water reactor case.


Author(s):  
P A Sarvari ◽  
E Cevikcan

There are many hazards on a ship that makes an emergency evacuation process inevitable. Providing safe and effective evacuation of passengers from ships in an emergency situation becomes critical. Handling a real ship evacuation practice is often unaffordable as modelling such an environment is very expensive and may cause severe distress to participants. As an alternative, simulation models have been used to overwhelm the issue above in recent years. Therefore, this paper proposes a novel simulation-based methodology for evaluating the effect of factors including physical as well as psychological passenger characteristics and routeing systematic on emergency evacuation process for public marine transportation. A detailed questionnaire has been conducted in this work to reflect passenger characteristics on simulation model in a more realistic manner. Also, a new routeing systematic is developed to provide an efficient evacuation procedure. As another contribution, a novel grid-based approach where the meshed discretized nodes can contain more than one passenger is proposed in simulation model for the first time. Then, a statistical analysis is included within the methodology to assess the importance level of each factor on evacuation time. The proposed methodology is applied to a real life Ro-Ro ferry. A validation protocol based on IMO regulations is conducted and confirmed the effectiveness of the suggested simulation model. The simulation of different scenario types have indicated the influencing factors in a ship emergency evacuation. According to results, passenger characteristics has been identified as the most dominant factor on evacuation performance. The highest evacuation time difference has been observed for different levels of weight attribute. Moreover, it is concluded that the consideration of load utilization balancing among evacuation systems for routeing decreases evacuation time significantly. Finally, significant evacuation time difference between grid approaches have been demonstrated.


Neurosurgery ◽  
2013 ◽  
Vol 73 (suppl_1) ◽  
pp. S94-S99 ◽  
Author(s):  
James Harrop ◽  
Ali R. Rezai ◽  
Daniel J. Hoh ◽  
George M. Ghobrial ◽  
Ashwini Sharan

Abstract BACKGROUND: Neurosurgical residents have traditionally been instructed on surgical techniques and procedures through an apprenticeship model. Currently, there has been research and interest in expanding the neurosurgical education model. OBJECTIVE: To establish a posterior cervical decompression educational curriculum with a novel cervical simulation model. METHODS: The Congress of Neurological Surgeons developed a simulation committee to explore and develop simulation-based models. The educational curriculum was developed to have didactic and technical components with the incorporation of simulation models. Through numerous reiterations, a posterior cervical decompression model was developed and a 2-hour education curriculum was established. RESULTS: Individual's level of training varied, with 5 postgraduate year (PGY) 2 participants, 1 PGY-3 participant, 2 PGY-5 participants, and 1 attending, with the majority being international participants (6 of 9, 67%). Didactic scores overall improved (7 of 9, 78%). The technical scores of all participants improved from 11 to 24 (mean, 14.1) to 19 to 25 (mean, 22.4). Overall, in the posterior cervical decompression simulator, there was a significant improvement in the didactic scores (P = .005) and the technical scores (P = .02). CONCLUSION: The posterior cervical decompression simulation model appears to be a valuable tool in educating neurosurgery residents in the aspects of this procedure. The combination of a didactic and technical assessment is a useful teaching strategy in terms of educational development.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Andreas Wettstein ◽  
Patric Grauberger ◽  
Sven Matthiesen

AbstractIn engineering design, an issue for using complex simulation models in system analysis are unknown causes for dynamic system behavior, which make parameterization difficult. This paper presents a case study in which a structured system analysis is used for the parameterization of complex dynamic multi-domain models. The dynamic system behavior of an impact wrench during fastening of a bolt is analyzed and modeled using the Contact and Channel Approach for structured parameterization of a multibody simulation model. This qualitative model building serves as a basis for a simulation model that quantifies the relations of design parameters and system behavior. Comparison with experimental test results is done as a validation. With this approach, the behavior identified in the simulation model could be traced back in a structured way to its cause in the system embodiment. The simulation model represented the real dynamic system behavior with an initial sufficient precision, but showed a lack of precision in detail. On this basis, the Contact and Channel Model was extended by adding additional statistical behavior of the system. Parameters of the system embodiment were identified qualitatively to improve the simulation model. A limitation in qualitative modeling of dynamic changes in the system has been identified that needs to be addressed in further research.


Sign in / Sign up

Export Citation Format

Share Document