Order Beyond Chaos: Introducing the Notion of Generation to Characterize the Continuously Evolving Implementations of Cyber-Physical Systems

Author(s):  
Imre Horváth ◽  
Zoltán Rusák ◽  
Yongzhe Li

Authors belonging to different institutions (‘schools’) of cyber-physical systems (CPSs) research and development report on largely different objectives, underpin their work with different theories and methodologies, and target characteristics which can actually better characterize other categories and families of engineered systems. This has resulted in an ontological chaos. Therefore, our research addressed the question: What exists in the form of past, current and future CPSs? Our hypothesis has been that we can have an ordered picture on the landscape of CPSs by introducing the notion of system generation. Generation is a structural term defined as a ‘technological/engineering cohort’ of different individual manifestation of systems that reflect genotypic features of ancestor systems belonging to the same category, but deviates from them with regards to their phenotypic features. Based on our literature findings, we have defined five generations of CPSs, which could be differentiated based on: (i) the level of self-intelligence, and (ii) the level of self-organization. The zeroth generation includes look-alikes and partial implementations of CPS. The 1G-CPSs include systems with self-regulation and self-tuning capabilities, while the 2G-CPSs are capable to operationalize self-awareness and self-adaptation. The 3G-CPSs are equipped with the capabilities of self-cognizance and self-evolution. According to our reasoning model, only the fourth generation of CPSs is supposed to achieve self-consciousness and self-reproduction in the form of system of systems. The paper analyses the major paradigmatic characteristics of these generations. It also provides an outlook to the trends that may have strong influence on the introduced generations of CPSs.

2015 ◽  
Vol 2015 ◽  
pp. 1-15 ◽  
Author(s):  
Nafaâ Jabeur ◽  
Nabil Sahli ◽  
Sherali Zeadally

Wireless sensor networks (WSNs) are key components in the emergent cyber physical systems (CPSs). They may include hundreds of spatially distributed sensors which interact to solve complex tasks going beyond their individual capabilities. Due to the limited capabilities of sensors, sensor actions cannot meet CPS requirements while controlling and coordinating the operations of physical and engineered systems. To overcome these constraints, we explore the ecosystem metaphor for WSNs with the aim of taking advantage of the efficient adaptation behavior and communication mechanisms of living organisms. By mapping these organisms onto sensors and ecosystems onto WSNs, we highlight shortcomings that prevent WSNs from delivering the capabilities of ecosystems at several levels, including structure, topology, goals, communications, and functions. We then propose an agent-based architecture that migrates complex processing tasks outside the physical sensor network while incorporating missing characteristics of autonomy, intelligence, and context awareness to the WSN. Unlike existing works, we use software agents to map WSNs to natural ecosystems and enhance WSN capabilities to take advantage of bioinspired algorithms. We extend our architecture and propose a new intelligent CPS framework where several control levels are embedded in the physical system, thereby allowing agents to support WSNs technologies in enabling CPSs.


Author(s):  
Lee T. Maccarone ◽  
Daniel G. Cole

Abstract Cyber-physical systems are engineered systems that rely on the integration of physical processes and computational resources. While this integration enables advanced techniques for monitoring and controlling systems, it also exposes the physical process to cyber-threats. An attacker who is able to access control inputs and mask measurements could damage the system while remaining undetected. By masking certain measurement signals, an attacker may be able to render a portion of the state space unobservable, meaning that it is impossible to estimate or infer the value of those states. This is called an observability attack. A game-theoretic approach is presented to analyze observability attacks. The attacker's strategy set includes all possible combinations of masked measurements. The defender's strategy set includes all possible combinations of measurement reinforcements. The attacker's and defender's utilities are quantified using the responses of the observable and unobservable states. The observability attack game is analyzed for a nuclear balance of plant system. Multiple pure-strategy and mixed-strategy Nash equilibria are identified, and the conditions for their existence are presented. Using this procedure, a security and control engineer can select the optimal strategy to defend a cyber-physical system from observability attacks.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 141373-141394
Author(s):  
Maximilian Gotzinger ◽  
David Juhasz ◽  
Nima Taherinejad ◽  
Edwin Willegger ◽  
Benedikt Tutzer ◽  
...  

2017 ◽  
Vol 139 (03) ◽  
pp. S3-S8 ◽  
Author(s):  
Edwin Zivi

This article discusses various aspects of a course on cyber-physical systems (CPS) in the educational programs of defense organizations. CPS are engineered systems that are built from, and depend upon, the seamless integration of computational algorithms and physical components. The article also highlights various objectives of the CPS course. A central challenge to deploying resilient CPSs involves the appreciation for the multi-disciplinary challenges and the lack of a unified framework for CPS analysis, design and implementation. A significant part of the course focuses on a case study in industrial control of a Vinyl Acetate (VAc) chemical plant. The course described herein presents fundamental concepts within the rapidly expanding field of CPS and has been tailored to and is well received by U.S. Naval Academy Systems Engineering senior level engineering students. The U.S. Naval Academy thrust in cyber security studies includes a new major, Cyber Sciences, and construction of a new facility, Hopper Hall, to house the assembled multi-disciplinary teaching and research team.


2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Femi Emmanuel Adeosun ◽  
Ayodeji Emmanuel Oke

Purpose In recent times, the construction industry is being influenced by technological innovations when delivering a better, more effective and efficient desired project, cyber-physical systems (CPSs) offer a coupling of the physical and engineered systems by monitoring, coordinating, controlling and integrating their operations. This study aims to examine the level of awareness of professionals and usage of CPSs for construction projects in Nigerian construction industry. Design/methodology/approach The target population for this study was the professionals in the construction industry consisting Architects, Quantity Surveyors, Engineers and Builders. Data collection was through the use of a structured questionnaire administered to the target population. The data was analyzed by using statistical tools. Findings This study concluded that the construction professionals in the Nigerian construction industry are mostly aware about the heating, ventilation and air conditioning (HVAC) systems, global positioning system, microphone, speakers and camera as the most widely used CPSs in construction industry. HVAC systems was also found to be the mostly adopted technologies in the construction industry. Originality/value This study recommended that platforms that increase the awareness and encourage the usage of CPSs in construction industry should be encouraged by stakeholders concerned with management of construction projects. Such include electronic construction and adoption of blockchain technology.


Symmetry ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1931
Author(s):  
Dmitry Zegzhda ◽  
Daria Lavrova ◽  
Evgeny Pavlenko ◽  
Anna Shtyrkina

The paper looks at the problem of cybersecurity in modern cyber–physical systems and proposes an evolutionary model approach to counteract cyber attacks by self-regulating the structure of the system, as well as several evolutionary indicators to assess the state of the system. The application of evolutionary models makes it possible to describe the regularities of systems behavior and their technical development, which is especially important regarding cyber attacks, which are the cause of a discontinuous evolution of complex systems. A practical example describes a system behavior during attacks and the self-regulation of its structure. The methodological approach consists of using evolutionary models to describe how modern cyber–physical systems can counteract cyber attacks and evolve, building on the experience of past security incidents. The main conclusions and recommendations are presented in the Discussion section, and they consist of the fact that using an evolutionary approach will not only increase the security of cyber–physical systems, but also define the principles of building systems that are resistant to cyber attacks.


Electronics ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 390 ◽  
Author(s):  
Marina Pérez-Jiménez ◽  
Borja Sánchez ◽  
Andrea Migliorini ◽  
Ramón Alcarria

Cyber-physical systems (CPS) are envisioned to change the whole of society. New engineered systems joining physical and digital solutions are being employed in industry, education, etc. These new systems are networked by default, and private information is shared among the different components related to users, critical infrastructures, or business operations. In this context, it is essential to encrypt those communication links to protect such information. However, even most complicated schemes based on hybrid (asymmetric and symmetric) solutions, finally require physical devices to store a secret key. This approach is cryptographically weak, as any person with physical access to the device could obtain that key. Therefore, in this paper we propose the use of physical unclonable functions (PUF) to generate secret keys for lightweight encryption schemes. Using PUFs, any attempt to capture the key is changing the original secret stream, and even manufacturers are not able to build two identical PUFs. The proposed key generator is based on magnetic materials and lightweight pseudorandom number generators to meet the low-cost and small size requirements of CPS. In particular, materials with an activated exchange-bias effect are employed, together with simple copper coils. The encryption process can be based on a simple XOR gate because of the robustness of the proposed key generator. In order to evaluate the performance of the proposed technology, an experimental validation based on simulation scenarios is also provided.


Author(s):  
Okolie S.O. ◽  
Kuyoro S.O. ◽  
Ohwo O. B

Cyber-Physical Systems (CPS) will revolutionize how humans relate with the physical world around us. Many grand challenges await the economically vital domains of transportation, health-care, manufacturing, agriculture, energy, defence, aerospace and buildings. Exploration of these potentialities around space and time would create applications which would affect societal and economic benefit. This paper looks into the concept of emerging Cyber-Physical system, applications and security issues in sustaining development in various economic sectors; outlining a set of strategic Research and Development opportunities that should be accosted, so as to allow upgraded CPS to attain their potential and provide a wide range of societal advantages in the future.


Sign in / Sign up

Export Citation Format

Share Document