An Algorithm for Partitioning Objects Into a Cube Skeleton and Segmented Shell Covers for Parallelized Additive Manufacturing

2021 ◽  
Author(s):  
Wilson Li ◽  
Thomas Poozhikala ◽  
Mahmoud Dinar

Abstract Despite a growing application of additive manufacturing, build volume has limited the size of fabricated parts. Machines that can produce large-scale parts in whole have high costs and less commercially available. A workaround is to partition the desired part into smaller partitions which can be manufactured in parallel, with the added benefit of controlling process parameters for each partition independently and reducing manufacturing time. This paper proposes an approach that divides a part into a cube skeleton covered by shell segments where all components can be fabricated with smaller 3D printers. The proposed algorithm first hollows out the original fully dense part to a user-specified thickness, then partitions the part into 26 surrounding regions using the six faces of the maximally inscribed cube (or cuboid). Islands, i.e., small, disconnected partitions within each region, are combined with the smallest neighbor to create up to 26 connected partitions. To minimize the number of printed partitions, the connected partitions are ranked based on their volume and combined with their smallest neighbor in pairs in descending order, while ensuring each pair fits within a pre-selected build volume of available 3D printers. The final partitioned shell segments, the cube (or cuboid) center, and the secondary layer of cubes propagated from the face centers of the maximally inscribed cube are generated by the algorithm. Results of two cases are shown.

2020 ◽  
Vol 6 (4) ◽  
Author(s):  
Elizabeth Grace Bishop ◽  
Simon James Leigh

The global COVID-19 pandemic has led to an international shortage of Personal Protective Equipment (PPE), with traditional supply chains unable to cope with the significant demand leading to critical shortfalls. A number of open and crowd sourced initiatives have sought to address this shortfall by producing equipment such as protective face shields using additive manufacturing techniques such as Fused Filament Fabrication (FFF). This paper reports the process of designing and manufacturing protective face shields using Large-scale Additive Manufacturing (LSAM) to produce the major thermoplastic components of the face shield. LSAM offers significant advantages over other Additive Manufacturing (AM) technologies in bridge manufacturing scenarios as a true transition between prototypes and mass production techniques such as injection moulding. In the context of production of COVID-19 face shields, the ability to produce the optimised components in under five minutes compared to what would typically take one to two hours using another AM technologies meant that significant production volume could be achieved rapidly with minimal staffing.


2019 ◽  
Vol 104 (9-12) ◽  
pp. 3679-3693 ◽  
Author(s):  
J. Shah ◽  
B. Snider ◽  
T. Clarke ◽  
S. Kozutsky ◽  
M. Lacki ◽  
...  

Author(s):  
Richard Gowan

During Ban Ki-moon’s tenure, the Security Council was shaken by P5 divisions over Kosovo, Georgia, Libya, Syria, and Ukraine. Yet it also continued to mandate and sustain large-scale peacekeeping operations in Africa, placing major burdens on the UN Secretariat. The chapter will argue that Ban initially took a cautious approach to controversies with the Council, and earned a reputation for excessive passivity in the face of crisis and deference to the United States. The second half of the chapter suggests that Ban shifted to a more activist pressure as his tenure went on, pressing the Council to act in cases including Côte d’Ivoire, Libya, and Syria. The chapter will argue that Ban had only a marginal impact on Council decision-making, even though he made a creditable effort to speak truth to power over cases such as the Central African Republic (CAR), challenging Council members to live up to their responsibilities.


Author(s):  
Yashwant Koli ◽  
N Yuvaraj ◽  
Aravindan Sivanandam ◽  
Vipin

Nowadays, rapid prototyping is an emerging trend that is followed by industries and auto sector on a large scale which produces intricate geometrical shapes for industrial applications. The wire arc additive manufacturing (WAAM) technique produces large scale industrial products which having intricate geometrical shapes, which is fabricated by layer by layer metal deposition. In this paper, the CMT technique is used to fabricate single-walled WAAM samples. CMT has a high deposition rate, lower thermal heat input and high cladding efficiency characteristics. Humping is a common defect encountered in the WAAM method which not only deteriorates the bead geometry/weld aesthetics but also limits the positional capability in the process. Humping defect also plays a vital role in the reduction of hardness and tensile strength of the fabricated WAAM sample. The humping defect can be controlled by using low heat input parameters which ultimately improves the mechanical properties of WAAM samples. Two types of path planning directions namely uni-directional and bi-directional are adopted in this paper. Results show that the optimum WAAM sample can be achieved by adopting a bi-directional strategy and operating with lower heat input process parameters. This avoids both material wastage and humping defect of the fabricated samples.


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1940
Author(s):  
Muhammad Usman Naseer ◽  
Ants Kallaste ◽  
Bilal Asad ◽  
Toomas Vaimann ◽  
Anton Rassõlkin

This paper presents current research trends and prospects of utilizing additive manufacturing (AM) techniques to manufacture electrical machines. Modern-day machine applications require extraordinary performance parameters such as high power-density, integrated functionalities, improved thermal, mechanical & electromagnetic properties. AM offers a higher degree of design flexibility to achieve these performance parameters, which is impossible to realize through conventional manufacturing techniques. AM has a lot to offer in every aspect of machine fabrication, such that from size/weight reduction to the realization of complex geometric designs. However, some practical limitations of existing AM techniques restrict their utilization in large scale production industry. The introduction of three-dimensional asymmetry in machine design is an aspect that can be exploited most with the prevalent level of research in AM. In order to take one step further towards the enablement of large-scale production of AM-built electrical machines, this paper also discusses some machine types which can best utilize existing developments in the field of AM.


Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 190
Author(s):  
Wei Wu ◽  
Jiaxiang Xue ◽  
Wei Xu ◽  
Hongyan Lin ◽  
Heqing Tang ◽  
...  

Serious heat accumulation limits the further efficiency and application in additive manufacturing (AM). This study accordingly proposed a double-wire SS316L stainless steel arc AM with a two-direction auxiliary gas process to research the effect of three parameters, such as auxiliary gas nozzle angle, auxiliary gas flow rate and nozzle-to-substrate distance on depositions, then based on the Box–Behnken Design response surface, a regression equation between three parameters and the total score were established to optimized parameters by an evaluation system. The results showed that samples with nozzle angle of 30° had poor morphology but good properties, and increasing gas flow or decreasing distance would enhance the airflow strength and stiffness, then strongly stir the molten pool and resist the interference. Then a diverse combination of auxiliary process parameters had different influences on the morphology and properties, and an interactive effect on the comprehensive score. Ultimately the optimal auxiliary gas process parameters were 17.4°, 25 L/min and 10.44 mm, which not only bettered the morphology, but refined the grains and improved the properties due to the stirring and cooling effect of the auxiliary gas, which provides a feasible way for quality and efficiency improvements in arc additive manufacturing.


2021 ◽  
pp. 239965442198970
Author(s):  
Maissaa Almustafa

The end of 2015 witnessed a global record in the number of forcibly displaced people fleeing because of wars and persecution. The unprecedented total of 65.3 million displaced individuals, out of which 21.3 million were refugees, was the highest number that the United Nations High Commissioner for Refugees (UNHCR) has recorded since its establishment in 1950. During the same year and in the face of this large-scale crisis, only 107,100 refugees were admitted for resettlement through official resettlement programs, whereas 3.2 million people applied for asylum globally. And in spite of the fact that the majority of the world refugees are hosted in ten developing regions, the dominant narrative in the global media was about the “unauthorized” arrival of more than one million asylum seekers in Europe by sea during 2015. This paper argues that the unexpected nature of refugees’ arrivals has proven that refugees were supposed to be contained in their camps in the Global South, deterred from reaching the territories of the Global North, represented here by Europe. Thus, the paper proposes that these arrivals are rather reflections of a crisis of protection that developed in the Global South where containment and deterrence strategies against refugees from the Global South exacerbate their inhumane displacement conditions in home regions. In the same context, the paper discusses how international protection structures have been reconstructed to serve the same goals of containment and deterrence, with the ultimate aim of putting people ‘back in place’ with minimal access to protection and rights.


2008 ◽  
Vol 42 ◽  
pp. 71-85 ◽  
Author(s):  
J.A. Woolliams ◽  
O. Matika ◽  
J. Pattison

SummaryLivestock production faces major challenges through the coincidence of major drivers of change, some with conflicting directions. These are:1. An unprecedented global change in demands for traditional livestock products such as meat, milk and eggs.2. Large changes in the demographic and regional distribution of these demands.3. The need to reduce poverty in rural communities by providing sustainable livelihoods.4. The possible emergence of new agricultural outputs such as bio-fuels making a significant impact upon traditional production systems.5. A growing awareness of the need to reduce the environmental impact of livestock production.6. The uncertainty in the scale and impact of climate change. This paper explores these challenges from a scientific perspective in the face of the large-scale and selective erosion of our animal genetic resources, and concludes thai there is a stronger and more urgent need than ever before to secure the livestock genetic resources available to humankind through a comprehensive global conservation programme.


Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 877
Author(s):  
Masoud Abbaszadeh ◽  
Volker Ventzke ◽  
Leonor Neto ◽  
Stefan Riekehr ◽  
Filomeno Martina ◽  
...  

Increasing demand for producing large-scale metal components via additive manufacturing requires relatively high building rate processes, such as wire + arc additive manufacturing (WAAM). For the industrial implementation of this technology, a throughout understanding of material behaviour is needed. In the present work, structures of Ti-6Al-4V, AA2319 and S355JR steel fabricated by means of WAAM were investigated and compared with respect to their mechanical and microstructural properties, in particular under compression loading. The microstructure of WAAM specimens is assessed by scanning electron microscopy, electron back-scatter diffraction, and optical microscopy. In Ti-6Al-4V, the results show that the presence of the basal and prismatic crystal planes in normal direction lead to an anisotropic behaviour under compression. Although AA2319 shows initially an isotropic plastic behaviour, the directional porosity distribution leads to an anisotropic behaviour at final stages of the compression tests before failure. In S355JR steel, isotropic mechanical behaviour is observed due to the presence of a relatively homogeneous microstructure. Microhardness is related to grain morphology variations, where higher hardness near the inter-layer grain boundaries for Ti-6Al-4V and AA2319 as well as within the refined regions in S355JR steel is observed. In summary, this study analyzes and compares the behaviour of three different materials fabricated by WAAM under compression loading, an important loading condition in mechanical post-processing techniques of WAAM structures, such as rolling. In this regard, the data can also be utilized for future modelling activities in this direction.


Sign in / Sign up

Export Citation Format

Share Document