Variable-Velocity Exponential Input Shaping for Position Controlled Robotic Systems

Author(s):  
P. Iravani ◽  
M. N. Sahinkaya

This paper demonstrates a new form of Input Shaping for vibration reduction applied to robotic systems that manipulate flexible loads. The method is based on using an exponential function to define asymptotic and vibration-free trajectories for the flexible system. The required control input is calculated analytically by using inverse dynamics which ensures the desired end-effector trajectory. The method is demonstrated experimentally on the control of point-to-point movements of a robotic manipulator.

Author(s):  
Jung-Keun Cho ◽  
Youn-sik Park

Abstract Input shaping is a method to reduce the motion-induced vibration in a flexible system. A kind of input shaping method (time-varying impulse shaping) has been proposed previously which is applicable to vibration reduction of time-varying systems. This paper presents experimental results of time-varying impulse shaping with a two-link flexible manipulator. The flexible manipulator has two revolute joints and moves on a vertical plane under gravity. A dynamic model was developed to provide a basis for the shaping, and the model was proved through some experiments. The reference trajectories commanded to the system are shaped by using the suggested time-varying impulse shaping. Implemented to the two-link flexible manipulator, test results demonstrate that the link vibration can be greatly suppressed during and after a point-to-point motion, and the residual vibration reduction was observed more than 90% with this shaping.


Robotica ◽  
1996 ◽  
Vol 14 (3) ◽  
pp. 339-345 ◽  
Author(s):  
Jung-Keun Cho ◽  
Youn-Sik Park

SUMMARYIn the authors' previous paper,10 an input shaping method was presented to reduce motion-induced vibrations effectively for various classes of flexible systems. In this paper, the effectiveness of the shaping method is experimentally demonstrated with a two-link flexible manipulator systemThe manipulator for experiments includes two revolute joints and two flexible links, and moves on a vertical plane under gravity. An analytic model is developed considering the flexibility of the system and its joint stiffness in order to derive an appropriate estimation of dynamic modal properties. The input shaping method used in this work utilizes time-varying modal properties obtained from the model instead of the conventional input shaping method which employs time-invariant modal properties. A point-to-point motion is tested in order to show the effectivess of the proposed shaping method in vibration reduction during and after a given motion. The given reference trajectories are shaped to suppress the motion induced vibration. The test results demonstrate that the link vibration can be greatly suppressed during and after a motion, and the residual vibration reduction was observed more than 90% by employing this time-varying impulse shaping technique.


2004 ◽  
Vol 127 (4) ◽  
pp. 307-314 ◽  
Author(s):  
Jason Lawrence ◽  
William Singhose ◽  
Keith Hekman

Fast and accurate point-to-point motion is a common operation for industrial machines, but vibration will frequently corrupt such motion. This paper develops commands that can move machines without vibration, even in the presence of Coulomb friction. Previous studies have shown that input shaping can be used on linear systems to produce point-to-point motion with no residual vibration. This paper extends command-shaping theory to nonlinear systems, specifically systems with Coulomb friction. This idea is applied to a PD-controlled mass with Coulomb friction to ground. The theoretical developments are experimentally verified on a solder cell machine. The results show that the new commands allow the proportional gain to be increased, resulting in reduced rise time, settling time, and steady-state error.


2019 ◽  
Vol 2 (2) ◽  
pp. 2
Author(s):  
Denis Mosconi ◽  
Adriano Almeida Gonçalves Siqueira ◽  
Everthon Silva Fonseca

To ensure the correct positioning of the end-effector of robot manipulators is one of the most important objectives of the robotic systems control. Lack of reliability in tracking the reference trajectory, as well as in the desired final positioning compromises the quality of the task to be performed, even causing accidents. The purpose of this work was to propose an optimal controller with an inner loop based on the dynamic model of the manipulator and a feedback loop based on the Linear Quadratic Regulator, in order to ensure that the end effector is in the right place, at the right time. The controller was compared to the conventional PID, presenting better performance, both in the transient response, eliminating overshoot, and steady-state, eliminating the stationary error.


Sensors ◽  
2021 ◽  
Vol 21 (10) ◽  
pp. 3498
Author(s):  
Youqiang Zhang ◽  
Cheol-Su Jeong ◽  
Minhyo Kim ◽  
Sangrok Jin

This paper shows the design and modeling of an end effector with a bidirectional telescopic mechanism to allow a surgical assistant robot to hold and handle surgical instruments. It also presents a force-free control algorithm for the direct teaching of end effectors. The bidirectional telescopic mechanism can actively transmit force both upwards and downwards by staggering the wires on both sides. In order to estimate and control torque via motor current without a force/torque sensor, the gravity model and friction model of the device are derived through repeated experiments. The LuGre model is applied to the friction model, and the static and dynamic parameters are obtained using a curve fitting function and a genetic algorithm. Direct teaching control is designed using a force-free control algorithm that compensates for the estimated torque from the motor current for gravity and friction, and then converts it into a position control input. Direct teaching operation sensitivity is verified through hand-guiding experiments.


Author(s):  
C. Amarnath ◽  
K. N. Umesh

The ability to move at reasonable ease in all directions is an important requirement in the design of manipulators. The degree of ease of mobility varies from point to point in the workspace of the manipulator’s end effector. Maximum ease of mobility is obtained at an isotropic point, and the minimum occurs at singularities. An attempt has been made here to use a geometric approach for determining the isotropic points in the workspace of planar 5-bar linkages. The geometrical approach leads to interesting observations on the location of isotropic points in the workspace. The procedure also yields a technique for the synthesis of 5-bar linkages and associated coupler points exhibiting isotropic behaviour. Additionally it has been shown that coupler points exhibiting isotropic mobility occur in pairs.


Robotica ◽  
1989 ◽  
Vol 7 (2) ◽  
pp. 165-168 ◽  
Author(s):  
A. Bodner

SUMMARYA method was developed that takes into account flexibility of robot links in the inverse dynamics calculations. This method uses the Newton-Euler equations and is applicable for special case systems that allow for only a small degree of flexibility. Application of the method should improve the accuracy of the position of the end effector during motion of the robot.The results of this study show that the method can be based entirely on an existing rigid-link model with only minimal changes required as additions. The computational complexity of the method is discussed briefly as well and indicates an increase of computations of slightly more than a factor of two as compared to a rigid-link model for the same robot geometry.


Author(s):  
M. Necip Sahinkaya ◽  
Yanzhi Li

Inverse dynamic analysis of a three degree of freedom parallel mechanism driven by three electrical motors is carried out to study the effect of motion speed on the system dynamics and control input requirements. Availability of inverse dynamics models offer many advantages, but controllers based on real-time inverse dynamic simulations are not practical for many applications due to computational limitations. An off-line linearisation of system and error dynamics based on the inverse dynamic analysis is developed. It is shown that accurate linear models can be obtained even at high motion speeds eliminating the need to use computationally intensive inverse dynamics models. A point-to-point motion path for the mechanism platform is formulated by using a third order exponential function. It is shown that the linearised model parameters vary significantly at high motion speeds, hence it is necessary to use adaptive controllers for high performance.


Author(s):  
Withit Chatlatanagulchai ◽  
Ittidej Moonmangmee ◽  
Pisit Intarawirat

Input shaping suppresses residual vibration by destructive interference of the impulse responses. Because proper destructive interference requires superposition property of the linear system, traditional input shaper only applies to the linear flexible system. In this paper, the work and energy principle is used to derive input shaper for flexible system having nonlinear spring and damper. It was shown via simulation and experiment that this type of shaper performs well with nonlinear systems. Positive, robust, and negative input shapers are discussed.


Sign in / Sign up

Export Citation Format

Share Document