Non-Model-Based Delamination Detection of Composite Plates Using Measured Mode Shapes

Author(s):  
Y. F. Xu ◽  
Da-Ming Chen ◽  
W. D. Zhu

Delamination is one type of damage that frequently occurs in laminated composite structures, and identification of such damage has been a major research topic in the past few decades. This paper proposes an accurate non-model-based method for delamination identification of laminated composite plates. A weighted mode shape damage index is formulated using squared weighted difference between a measured mode shape of a composite plate with delamination and one from a polynomial that fits the measured mode shape of the composite plate with a proper order. Weighted mode shape damage indices associated with at least two measured mode shapes of the same mode are synthesized to formulate a synthetic mode shape damage index to exclude some false positive identification results due to measurement noise and error. An auxiliary mode shape damage index is proposed to further assist delamination identification, by which some false negative identification results can be excluded and edges of a delamination area can be accurately and completely identified. Numerical examples are presented to investigate effectiveness of the proposed method, and it is shown that edges of a delamination area in composite plates can be accurately and completely identified when measured mode shapes are contaminated by measurement noise and error.

2010 ◽  
Vol 19 (4) ◽  
pp. 096369351001900 ◽  
Author(s):  
Emin Ergun

The aim of this study is to investigate, experimentally and numerically, the change of critical buckling load in composite plates with different ply numbers, orientation angles, stacking sequences and boundary conditions as a function of temperature. Buckling specimens have been removed from the composite plate with glass-fibre reinforcement at [0°]i and [45°]i (i= number of ply). First, the mechanical properties of the composite material were determined at different temperatures, and after that, buckling experiments were done for those temperatures. Then, numerical solutions were obtained by modelling the specimens used in the experiment in the Ansys10 finite elements package software. The experimental and numerical results are in very good agreement with each other. It was found that the values of the buckling load at [0°] on the composite plates are higher than those of other angles. Besides, symmetrical and anti-symmetrical conditions were examined to see the effect of the stacking sequence on buckling and only numerical solutions were obtained. It is seen that the buckling load reaches the highest value when it is symmetrical in the cross-ply stacking sequence and it is anti-symmetrical in the angle-ply stacking sequence.


Author(s):  
P. K. Karsh ◽  
Bindi Thakkar ◽  
R. R. Kumar ◽  
Abhijeet Kumar ◽  
Sudip Dey

The delamination is one of the major modes of failure occurring in the laminated composite due to insufficient bonding between the layers. In this paper, the natural frequencies of delaminated S-glass and E-glass epoxy cantilever composite plates are presented by employing the finite element method (FEM) approach. The rotary inertia and transverse shear deformation are considered in the present study. The effect of parameters such as the location of delamination along the length, across the thickness, the percentage of delamination, and ply-orientation angle on first three natural frequencies of the cantilever plates are presented for S-glass and E-glass epoxy composites. The standard eigenvalue problem is solved to obtain the natural frequencies and corresponding mode shapes. First three mode shape of S-Glass and E-Glass epoxy laminated composites are portrayed corresponding to different ply angle of lamina.


1996 ◽  
Vol 118 (2) ◽  
pp. 141-146 ◽  
Author(s):  
S. Abrate

While many advances were made in the analysis of composite structures, it is generally recognized that the design of composite structures must be studied further in order to take full advantage of the mechanical properties of these materials. This study is concerned with maximizing the fundamental natural frequency of triangular, symmetrically laminated composite plates. The natural frequencies and mode shapes of composite plates of general triangular planform are determined using the Rayleigh-Ritz method. The plate constitutive equations are written in terms of stiffness invariants and nondimensional lamination parameters. Point supports are introduced in the formulation using the method of Lagrange multipliers. This formulation allows studying the free vibration of a wide range of triangular composite plates with any support condition along the edges and point supports. The boundary conditions are enforced at a number of points along the boundary. The effects of geometry, material properties and lamination on the natural frequencies of the plate are investigated. With this stiffness invariant formulation, the effects of lamination are described by a finite number of parameters regardless of the number of plies in the laminate. We then determine the lay-up that will maximize the fundamental natural frequency of the plate. It is shown that the optimum design is relatively insensitive to the material properties for the commonly used material systems. Results are presented for several cases.


2016 ◽  
Vol 16 (1) ◽  
pp. 3-23 ◽  
Author(s):  
Yongfeng Xu ◽  
Weidong Zhu

Mode shapes (MSs) have been extensively used to detect structural damage. This paper presents a new non-model-based damage identification method that uses measured MSs to identify damage in plates. A MS damage index (MSDI) is proposed to identify damage near regions with consistently high values of MSDIs associated with MSs of different modes. A MS of a pseudo-undamaged plate can be constructed for damage identification using a polynomial of a properly determined order that fits the corresponding MS of a damaged plate, if the associated undamaged plate is geometrically smooth and made of materials that have no stiffness and mass discontinuities. It is shown that comparing a MS of a damaged plate with that of a pseudo-undamaged plate is better for damage identification than with that of an undamaged plate. Effectiveness and robustness of the proposed method for identifying damage of different positions and areas are numerically investigated using different MSs; effects of crucial factors that determine effectiveness of the proposed method are also numerically investigated. Damage in the form of a machined thickness reduction area was introduced to an aluminum plate; it was successfully identified by the proposed method using measured MSs of the damaged plate.


Author(s):  
Da-Ming Chen ◽  
Y. F. Xu ◽  
W. D. Zhu

A worldwide round robin study is sponsored by the Society of Experimental Mechanics to detect damage in a composite plate with a scanning laser Doppler vibrometer (SLDV). The aim of this round robin study is to explore the potential of a SLDV for detection of damage in composite plates. In this work, a curvature-based damage detection method with use of a continuously SLDV (CSLDV) is proposed. A CSLDV can be regarded as a real-time moving sensor, since the laser spot from the CSLDV continuously moves on a structure surface and measures velocity response. An operating deflection shape (ODS) of the damaged composite plate can be obtained from velocity response by the demodulation method. The ODS of the associated undamaged composite plate is obtained by using polynomials to fit the ODS of the damaged plate. A curvature damage index (CDI) using differences between curvatures of ODSs (CODSs) associated with the ODSs from the demodulation method and the polynomial fit is proposed to detect damage. With the proposed curvature-based damage detection method, locations of two possible damage are detected in areas with consistently high CDI values at two excitation frequencies, which are in good agreement with prescribed damage locations.


2020 ◽  
Vol 54 (29) ◽  
pp. 4691-4708
Author(s):  
Aniket Chanda ◽  
Rosalin Sahoo

The analytical solution for static analysis of laminated composite plate integrated with piezoelectric fiber reinforced composite actuator is obtained using a recently developed Trigonometric Zigzag theory. The kinematic field consists of five independent field variables accommodating non-linear variation of transverse shear strains through the thickness of the laminated composite plate. The principle of minimum potential energy is adopted to derive the governing equations of equilibrium. Navier’s solution technique is employed to convert the system of coupled partial differential equations into a system of algebraic equations. The electric potential is assumed to vary linearly through the thickness of the piezoelectric layer. The analytical formulation also does not include voltage as an additional primary variable. The response in the form of deflection and stresses are obtained for smart composite plates subjected to electro-mechanical loads and compared with the elasticity solutions and available results reported by other researchers in the existing literature. The transverse shear stresses are accurately determined by an efficient post-processing technique of integrating the equilibrium equations of elasticity. Parametric studies on actuation in the response of the smart composite plate are also presented graphically in order to have a clear understanding of the static behavior.


Author(s):  
Mahendran Govindasamy ◽  
Chandrasekaran Kesavan ◽  
Malhotra Santkumar

The main objective of this study is to evaluate the dynamics-based techniques for damage detection in laminated composite cantilevered rectangular plates and cylindrical shells with damages in the form of surface macro-level cracks using finite element analysis (FEA). However, the quantitative change in global vibration characteristics is not sufficiently sensitive to local structural damages especially to small size damages. Hence certain parameters called damage indicators based on mode shape curvature, which are the second derivatives of the vibration characteristics (mode shapes), are used in this study to detect the location and size of even small damages accurately in laminated composite structures. The commercial FEA package ANSYS is used for the theoretical modal analysis to generate the natural frequencies and normalized mode shapes of the intact and damaged structures. Experimental investigations are carried out on the laminated plate and shell structural elements to provide a validation of the analysis. Experimental investigations are carried out on the laminated composite (E-glass unidirectional fibers reinforced epoxy resin) cantilevered plate and shell structural elements to provide a validation of the analysis. The effectiveness of these methods is clearly demonstrated by the results obtained.


Author(s):  
Rifat Arıko¨k ◽  
Zahit Mecitog˘lu

This paper presents the large deflection elastic analysis of the hand lay-up composite plates with different extensional and flexural modulus including geometric nonlinearity effects that are taken into account with the von Ka´rma´n large deflection theory of thin plates. Governing equations of the motion are derived by means of the virtual work principle. Then the Galerkin method is applied to reduce the nonlinear coupled differential equations into a nonlinear algebraic equation system. The MATLAB and MATHEMATICA software are used to solve the equation system. Because of the common nonuniformities in hand lay-up fabric laminates such as resin surface layers and unequal layer thickness, the flexural and extensional modulus of such laminated composites are different. By the way, since the bending and in-plane effects are together affect to the nonlinear behavior of a composite laminate, it should give more reliable results when using different flexural and extensional modulus in the analysis. In this study, the results of approximate analysis, ANSYS finite element analysis and experimental study are obtained and compared for a fully-clamped laminated composite plate subjected to a uniform pressure load. The material properties used in the analysis are determined tension and three-point bending tests.


1996 ◽  
Vol 2 (4) ◽  
pp. 381-414 ◽  
Author(s):  
T.J. Anderson ◽  
A.H. Nayfeh

The natural frequencies and mode shapes of several graphite-epoxy plates were determined using experimental modal analysis and finite-element analysis. The experimental and theoretical results are com pared. The samples tested included four types of layups: ±15°, ±30°, cross-ply, and quasi-isotropic plates. Each plate was tested in three configurations: free-hanging, cantilever, and fixed-fixed for a total of twelve test configurations. The material properties of the plates and the test methods used to obtain them are in cluded. There is a very good agreement between the experimental and theoretical results for the free-hanging and cantilever configurations. The agreement for the fixed-fixed results is poor. This indicates that the clamps for the fixed-fixed configuralion are not ideal and that they introduce some uncertainty in the boundary condi tions. The free-hanging results provide accurate experimental natural frequencies of several composite plates; they can be used to validate future theoretical developments. The fixed-fixed results are used to provide pos sible explanations for the discrepancies between the measured and calculated natural frequencies previously reported in the literature.


2020 ◽  
Vol 57 (6A) ◽  
pp. 150
Author(s):  
Thanh Ngoc Pham

A theoretical study of sound transmission loss across a clamped double-laminated composite plate filled with poroelastic material is formulated. Biot’s theory is employed to describe wave propagation in elastic porous media. The two face composite plates are modeled as classical thin plates. By using the modal superposition theory, a double series solution for the sound transmission loss of the structure is obtained with the help of the Galerkin method. The analytical model is validated against previous experimental results of a single sound wave under normal incidence. The numerical results suggest that the density of poroelastic material, the type of composite materials and the composite plies arrangement have significant effects on the sound transmission loss of considered structure.


Sign in / Sign up

Export Citation Format

Share Document