Design and Control of a Hexacopter With Soft Grasper for Autonomous Object Detection and Grasping

Author(s):  
Shatadal Mishra ◽  
Dangli Yang ◽  
Carly Thalman ◽  
Panagiotis Polygerinos ◽  
Wenlong Zhang

In this paper, an image based visual servo (IBVS) scheme is developed for a hexacopter, equipped with a robotic soft grasper to perform autonomous object detection and grasping. The structural design of the hexacopter-soft grasper system is analyzed to study the soft grasper’s influence on the multirotor’s aerodynamics. The object detection, tracking and trajectory planning are implemented on a high-level computer which sends position and velocity setpoints to the flight controller. A soft robotic grasper is mounted on the UAV to enable the collection of various contaminants. The use of soft robotics removes excess weight associated with traditional rigid graspers, as well as simplifies the controls of the grasping mechanics. Collected experimental results demonstrate autonomous object detection, tracking and grasping. This pipeline would enable the system to autonomously collect solid and liquid contaminants in water canal based on GPS and multi-camera system. It can also be used for more complex aerial manipulation including in-flight grasping.

2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Andrija Milojević ◽  
Sebastian Linß ◽  
Žarko Ćojbašić ◽  
Heikki Handroos

Abstract In soft robotics, there is still a great need for a universal but simple gripper that realizes a high level of adaptability as well as a gentle touch to a wide variety of unknown objects of different size, shape, stiffness, and weight without the use of sensors or vision. Various, mostly complex grippers already exist based on certain actuation concepts. However, each solution has specific limitations, especially regarding gripping different soft and delicate objects. Therefore, this paper introduces a new approach to design a simple, adaptive, and versatile soft robotic two-finger gripper that is based on compliant mechanisms. More specifically, an inherently gentle touch is realized by utilizing an optimally synthesized mechanism with distributed compliance in combination with a conventional linear actuator. It is shown by finite elements method (FEM) simulations that the gripper realizes a high force and motion transmission at the same time. Furthermore, it is demonstrated by tests with a gripper prototype that reliable, safe, and fast grasping as well as manipulation are possible for a wide variety of objects. It is shown that beside regular and stiff objects also very challenging objects can be easily gripped, e.g., small, irregular, soft, and squeezable objects like fruits, berries, and vegetables. Moreover, it is confirmed that the developed compliant two-finger gripper can be used beneficially without sensors and control for differently sized and shaped objects with a comparable weight.


Author(s):  
Roger Magnusson

Non-communicable diseases (NCDs), including cardiovascular disease, cancer, chronic respiratory diseases, and diabetes, are responsible for around 70 percent of global deaths each year. This chapter describes how NCDs have become prevalent and critically evaluates global efforts to address NCDs and their risk factors, with a particular focus on the World Health Organization (WHO) and United Nations (UN) system. It explores the factors that have prevented those addressing NCDs from achieving access to resources and a priority commensurate with their impact on people’s lives. The chapter evaluates the global response to NCDs both prior to and since the UN High-Level Meeting on Prevention and Control of Non-communicable Diseases, held in 2011, and considers opportunities for strengthening that response in future.


Author(s):  
Laura Vieten ◽  
Anne Marit Wöhrmann ◽  
Alexandra Michel

Abstract Objective Due to recent trends such as globalization and digitalization, more and more employees tend to have flexible working time arrangements, including boundaryless working hours. The aim of this study was to investigate the relationships of various aspects of boundaryless working hours (overtime, Sunday work, and extended work availability) with employees’ state of recovery. Besides, we examined the mediating and moderating role of recovery experiences (psychological detachment, relaxation, mastery, and control) in these relationships. Methods We used data from 8586 employees (48% women; average age of 48 years) who took part in the 2017 BAuA-Working Time Survey, a representative study of the German working population. Regression analyses were conducted to test main effects as well as mediation and moderation. Results Overtime work, Sunday work, and extended work availability were negatively related to state of recovery. Psychological detachment mediated these relationships. Furthermore, we found that relaxation and control mediated the association between extended work availability and state of recovery. However, no relevant moderating effects were found. Conclusions Altogether, our findings indicate that various aspects of boundaryless working hours pose a risk to employees’ state of recovery and that especially psychological detachment is a potential mechanism in these relationships. In addition, the results suggest that a high level of recovery experiences cannot attenuate these negative relationships in leisure time. Therefore, employers and employees alike should try to avoid or minimize boundaryless working hours.


Author(s):  
Ya-Fang Hu ◽  
Li-Ping Jia ◽  
Fang-Yuan Yu ◽  
Li-Ying Liu ◽  
Qin-Wei Song ◽  
...  

Abstract Background Coxsackievirus A16 (CVA16) is one of the major etiological agents of hand, foot and mouth disease (HFMD). This study aimed to investigate the molecular epidemiology and evolutionary characteristics of CVA16. Methods Throat swabs were collected from children with HFMD and suspected HFMD during 2010–2019. Enteroviruses (EVs) were detected and typed by real-time reverse transcription-polymerase chain reaction (RT-PCR) and RT-PCR. The genotype, evolutionary rate, the most recent common ancestor, population dynamics and selection pressure of CVA16 were analyzed based on viral protein gene (VP1) by bioinformatics software. Results A total of 4709 throat swabs were screened. EVs were detected in 3180 samples and 814 were CVA16 positive. More than 81% of CVA16-positive children were under 5 years old. The prevalence of CVA16 showed obvious periodic fluctuations with a high level during 2010–2012 followed by an apparent decline during 2013–2017. However, the activities of CVA16 increased gradually during 2018–2019. All the Beijing CVA16 strains belonged to sub-genotype B1, and B1b was the dominant strain. One B1c strain was detected in Beijing for the first time in 2016. The estimated mean evolutionary rate of VP1 gene was 4.49 × 10–3 substitution/site/year. Methionine gradually fixed at site-23 of VP1 since 2012. Two sites were detected under episodic positive selection, one of which (site-223) located in neutralizing linear epitope PEP71. Conclusions The dominant strains of CVA16 belonged to clade B1b and evolved in a fast evolutionary rate during 2010–2019 in Beijing. To provide more favorable data for HFMD prevention and control, it is necessary to keep attention on molecular epidemiological and evolutionary characteristics of CVA16.


2021 ◽  
Vol 11 (9) ◽  
pp. 3921
Author(s):  
Paloma Carrasco ◽  
Francisco Cuesta ◽  
Rafael Caballero ◽  
Francisco J. Perez-Grau ◽  
Antidio Viguria

The use of unmanned aerial robots has increased exponentially in recent years, and the relevance of industrial applications in environments with degraded satellite signals is rising. This article presents a solution for the 3D localization of aerial robots in such environments. In order to truly use these versatile platforms for added-value cases in these scenarios, a high level of reliability is required. Hence, the proposed solution is based on a probabilistic approach that makes use of a 3D laser scanner, radio sensors, a previously built map of the environment and input odometry, to obtain pose estimations that are computed onboard the aerial platform. Experimental results show the feasibility of the approach in terms of accuracy, robustness and computational efficiency.


2021 ◽  
Vol 9 (5) ◽  
pp. 1050
Author(s):  
Jing Zhu ◽  
Xiang Sun ◽  
Zhi-Dong Zhang ◽  
Qi-Yong Tang ◽  
Mei-Ying Gu ◽  
...  

Endophytic bacteria and fungi colonize plants that grow in various types of terrestrial and aquatic ecosystems. Our study investigates the communities of endophytic bacteria and fungi of halophyte Kalidium schrenkianum growing in stressed habitats with ionizing radiation. The geochemical factors and radiation (at low, medium, high level and control) both affected the structure of endophytic communities. The bacterial class Actinobacteria and the fungal class Dothideomycetes predominated the endophytic communities of K. schrenkianum. Aerial tissues of K. schrenkianum had higher fungal diversity, while roots had higher bacterial diversity. Radiation had no significant effect on the abundance of bacterial classes. Soil pH, total nitrogen, and organic matter showed significant effects on the diversity of root endophytes. Radiation affected bacterial and fungal community structure in roots but not in aerial tissues, and had a strong effect on fungal co-occurrence networks. Overall, the genetic diversity of both endophytic bacteria and fungi was higher in radioactive environments, however negative correlations were found between endophytic bacteria and fungi in the plant. The genetic diversity of both endophytic bacteria and fungi was higher in radioactive environments. Our findings suggest that radiation affects root endophytes, and that the endophytes associated with aerial tissues and roots of K. schrenkianum follow different mechanisms for community assembly and different paradigms in stress response.


2021 ◽  
Vol 1802 (2) ◽  
pp. 022067
Author(s):  
Xing Zhang ◽  
Hao Kou ◽  
Yi Zhang ◽  
Kaina Jan ◽  
Boris Ivanovic

2021 ◽  
Vol 13 (9) ◽  
pp. 4829
Author(s):  
Ahmed Hosny Saleh Metwally ◽  
Maiga Chang ◽  
Yining Wang ◽  
Ahmed Mohamed Fahmy Yousef

There is a growing body of literature that recognizes the importance of applying gamification in educational settings. This research developed an application to gamify students’ homework to address the concern of the students’ inability to complete their homework. This research aims to investigate students’ performance in doing their homework, and reflections and perceptions of the gameful experience in gamified homework exercises. Based on the data gathered from experimental and control groups (N = 84) via learning analytics, survey, and interview, the results show a high level of satisfaction according to students’ feedback. The most noticeable finding to extract from the analysis is that students can take on a persona, earn points, and experience a deeper sense of achievement through doing the gamified homework. Moreover, the students, on the whole, are likely to be intrinsically motivated whenever the homework is attributed to factors under their own control, when they consider that they have the expertise to be successful learners to achieve their desired objectives, and when they are interested in dealing with the homework for learning, not just achieving high grades.


Sign in / Sign up

Export Citation Format

Share Document