scholarly journals A Metamaterial-Inspired Structure for Simultaneous Vibration Attenuation and Energy Harvesting

2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Winner Anigbogu ◽  
Hamzeh Bardaweel

In this article, a magnetomechanical metamaterial structure capable of simultaneous vibration attenuation and energy harvesting is presented. The structure consists of periodically arranged local resonators combining cantilever beams and permanent magnet-coil systems. A prototype of the metamaterial dual-function structure is fabricated, and models are developed. Results show good agreement between model simulation and experiment. Two frequency bandgaps are measured: 205–257 Hz and 587–639 Hz. Within these bandgaps, vibrations are completely attenuated. The level of vibration attenuation in the first bandgap is substantially larger than the level of vibration attenuation observed in the second bandgap. Mode shapes suggest that bending deformations experienced by the local resonators in the second bandgap are less than the deformations experienced in the first bandgap, and most vibrational energy is localized within the first bandgap where the fundamental resonant frequency is located, i.e., 224 Hz. The ability of the fabricated metamaterial structure to harvest electric power in these bandgaps is examined. Results show that vibration attenuation and energy harvesting characteristics of the metamaterial structure are coupled. Stronger vibration attenuation within the first bandgap has led to enhanced energy harvesting capabilities within this bandgap. Power measurements at optimum load resistance of 15 Ω reveal that maximum power generated within the first bandgap reaches 5.2 µW at 245 Hz. Compared with state-of-the-art, the metamaterial structure presented here shows a significant improvement in electric power generation, at considerably lower load resistance, while maintaining the ability to attenuate undesired vibrations within the frequency bandgap.

Author(s):  
Mohammad A. Bukhari ◽  
Feng Qian ◽  
Oumar R. Barry ◽  
Lei Zuo

Abstract The study of simultaneous energy harvesting and vibration attenuation has recently been the focus in many acoustic meta-materials investigations. The studies have reported the possibility of harvesting electric power using electromechanical coupling; however, the effect of the electromechanical resonator on the obtained bandgap’s boundaries has not been explored yet. In this paper, we investigate metamaterial coupled to electromechanical resonators to demonstrate the effect of electromechanical coupling on the wave propagation analytically and experimentally. The electromechanical resonator is shunted to an external load resistor to harvest energy. We derive the analytical dispersion curve of the system and show the band structure for different load resistors and electromechanical coupling coefficients. To verify the analytical dispersion relations, we also simulate the system numerically. Furthermore, experiment is carried out to validate the analytical observations. The obtained observations can guide designers in selecting electromechanical resonator parameters for effective energy harvesting from meta-materials.


2019 ◽  
Vol 87 (4) ◽  
Author(s):  
Hamed Farokhi ◽  
Alireza Gholipour ◽  
Mergen H. Ghayesh

Abstract This paper presents complete nonlinear electromechanical models for energy harvesting devices consisting of multiple piezoelectric bimorphs (PBs) connected in parallel and series, for the first time. The proposed model is verified against available experimental results for a specific case. The piezoelectric and beam constitutive equations and different circuit equations are utilized to derive the complete nonlinear models for series and parallel connections of the PBs as well as those of piezoelectric layers in each bimorph, i.e., four nonlinear models in total. A multi-modal Galerkin approach is used to discretize these nonlinear electromechanical models. The resultant high-dimensional set of equations is solved utilizing a highly optimized and efficient numerical continuation code. Examining the system behavior shows that the optimum load resistance for an energy harvester array of 4 PBs connected in parallel is almost 4% of that for the case with PBs connected in series. It is shown an energy harvesting array of 8 PBs could reach a bandwidth of 14 Hz in low frequency range, i.e., 20–34 Hz. Compared with an energy harvester with 1 PB, it is shown that the bandwidth can be increased by more than 300% using 4 PBs and by more than 500% using 8 PBs. Additionally, the drawbacks of a multi-PB energy harvesting device are identified and design enhancements are proposed to improve the efficiency of the device.


Author(s):  
Christopher Sugino ◽  
Vinciane Guillot ◽  
Alper Erturk

Vibration-based energy harvesting is a growing field for generating low-power electricity to use in wireless electronic devices, such as the sensor networks used in structural health monitoring applications. Locally resonant metastructures, which are structures that comprise locally resonant metamaterial components, enable bandgap formation at wavelengths much longer than the lattice size, for critical applications such as low-frequency vibration attenuation in flexible structures. This work aims to bridge the domains of energy harvesting and locally resonant metamaterials to form multifunctional structures that exhibit both low-power electricity generation and vibration attenuation capabilities. A fully coupled electromechanical modeling framework is developed for two characteristic systems and their modal analysis is presented. Simulations are performed to explore the vibration and electrical power frequency response maps for varying electrical load resistance, and optimal loading conditions are presented. Case studies are presented to understand the interaction of bandgap formation and energy harvesting capabilities of this new class of multifunctional energy-harvesting locally resonant metastructures. It is shown that useful energy can be harvested from the locally resonant metastructure without significantly diminishing their dramatic vibration attenuation in the locally resonant bandgap. Thus, by integrating energy harvesters into a locally resonant metastructure, there is new potential for multifunctional self-powering or self-sensing locally resonant metastructures.


2013 ◽  
Vol 136 (2) ◽  
Author(s):  
Mehdi Hendijanizadeh ◽  
Mohamed Moshrefi-Torbati ◽  
Suleiman M. Sharkh

Existing design criteria for vibration energy harvesting systems provide guidance on the appropriate selection of the seismic mass and load resistance. To harvest maximum power in resonant devices, the mass needs to be as large as possible and the load resistance needs to be equal to the sum of the internal resistance of the generator and the mechanical damping equivalent resistance. However, it is shown in this paper that these rules produce suboptimum results for applications where there is a constraint on the relative displacement of the seismic mass, which is often the case. When the displacement is constrained, increasing the mass beyond a certain limit reduces the amount of harvested power. The optimum load resistance in this case is shown to be equal to the generator's internal resistance. These criteria are extended to those devices that harvest energy from a low-frequency vibration by utilizing an interface that transforms the input motion to higher frequencies. For such cases, the optimum load resistance and the corresponding transmission ratio are derived.


Author(s):  
Miles Larkin ◽  
Yonas Tadesse

In this paper, a new multimodal energy harvesting device consisting of two transduction mechanisms and having unique properties at various operating modes is presented. The hybrid system includes electromagnetic and piezoelectric energy harvesting technologies, and uses linear motion and impact forces from human motion for energy harvesting. The device is based on an unbalanced electromagnetic rotor made of three beams of piezoelectric material that have magnets attached to the ends. The device is to be worn on the legs or arms of a person. Linear motion, from the arms or legs swinging, causes the rotor to spin and the magnets to pass over the coils. Impact forces, from stepping, induce stress on the piezoelectrics which generates voltage across the electrode. The results of several numerical simulations are presented. For the piezoelectric beams, numerical simulations were done to find the deflection, stress, optimum operating frequency, and mode shapes taking into account environmental conditions. For the electromagnetic generation, numerical simulations were done to find the optimal load resistance and power generation for several different orientations. Other design related issues will also be investigated to fully realize the device in real world applications.


2020 ◽  
Vol 64 (1-4) ◽  
pp. 201-210
Author(s):  
Yoshikazu Tanaka ◽  
Satoru Odake ◽  
Jun Miyake ◽  
Hidemi Mutsuda ◽  
Atanas A. Popov ◽  
...  

Energy harvesting methods that use functional materials have attracted interest because they can take advantage of an abundant but underutilized energy source. Most vibration energy harvester designs operate most effectively around their resonant frequency. However, in practice, the frequency band for ambient vibrational energy is typically broad. The development of technologies for broadband energy harvesting is therefore desirable. The authors previously proposed an energy harvester, called a flexible piezoelectric device (FPED), that consists of a piezoelectric film (polyvinylidene difluoride) and a soft material, such as silicon rubber or polyethylene terephthalate. The authors also proposed a system based on FPEDs for broadband energy harvesting. The system consisted of cantilevered FPEDs, with each FPED connected via a spring. Simply supported FPEDs also have potential for broadband energy harvesting, and here, a theoretical evaluation method is proposed for such a system. Experiments are conducted to validate the derived model.


2018 ◽  
Author(s):  
T.A. Konev ◽  
V.A. Kuzmin ◽  
E. Yu. Mutovina ◽  
R.D. Puzhaykin ◽  
Vladimir Salomatov

Chemical sources of current are investigated as lines with distributed parameters. Analytical expressions are obtained for the voltage and active power values of the source at different distances from the beginning of the cell as well as dependences of the working voltage and active power on the source length. Effects of a reduction in the operating voltage and active power are due to the flow of electric current along the source during operation. The magnitude of these effects depends not only on the length of the source, but also on the ratio of characteristic resistance to the load resistance.<br>


2019 ◽  
Vol 67 (3) ◽  
pp. 142-154 ◽  
Author(s):  
M. Y. Abdollahzadeh Jamalabadi ◽  
Moon K. Kwak

This study presents the analytical solution and experimental investigation of the galloping energy harvesting from oscillating elastic cantilever beam with a rigid mass. A piezoelectric wafer was attached to galloping cantilever beam to harvest vibrational energy in electric charge form. Based on Euler-Bernoulli beam assumption and piezoelectric constitutive equation, kinetic energy and potential energy of system were obtained for the proposed structure. Virtual work by generated charge and galloping force applied onto the rigid mass was obtained based on Kirchhoff's law and quasistatic assumption. Nonlinear governing electro-mechanical equations were then obtained using Hamilton's principle. As the system vibrates by self-exciting force, the fundamental mode is the only one excited by galloping. Hence, multi-degreeof-freedom equation of motion is simplified to one-degree-of-freedom model. In this study, closed-form solutions for electro-mechanical equations were obtained by using multi-scale method. Using these solutions, we can predict galloping amplitude, voltage amplitude and harvested power level. Numerical and experimental results are presented and discrepancies between experimental and numerical results are fully discussed.


2010 ◽  
Vol 2 (2) ◽  
pp. 80-92
Author(s):  
Rupesh Patel ◽  
Atanas A. Popov ◽  
Stewart McWilliam

Sign in / Sign up

Export Citation Format

Share Document