Reducing Residential and Commercial Energy Consumption in the US: The Role of Water Heaters

Author(s):  
Kelly M. Twomey ◽  
Susan Conover ◽  
Michael E. Webber

Residential and commercial water heating in the United States consumed nearly 3,700 trillion British Thermal Units (BTUs) of primary energy in 2010. Nearly half of this primary energy was lost as waste heat at the point of power generation to provide electricity for electric water heaters. In the residential sector alone, water heating accounted for 17% of total 2010 on-site energy, use or about 1,960 trillion BTUs. Of this amount, about 22%, or 440 trillion BTUs, was consumed by residential electric water heaters. However, 1,380 trillion BTUs of primary energy was required to produce this retail electric power at the power station, indicating that electricity generation is much less efficient than directly burning fuels for water heating. This study analyzes 2010 baseline primary energy consumption for water heating in the US by considering energy conversions and end-use efficiencies in the residential and commercial sectors. In order to assess more energy and carbon-efficient means of heating water, we defined four additional scenarios in order to quantify potential energy savings by replacing electric water heaters with more efficient, commercially available technologies. The scenarios ranged in scope and technology deployment, and resulted in energy savings of 10–25% and carbon dioxide emission reductions of 10–20%. Although future deployment of water heating technologies is not likely to replicate any specific scenario, the conclusions drawn from this study are useful in guiding policy incentives and consumer behavior in regards to choosing between water heating technologies.

Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3876
Author(s):  
Sameh Monna ◽  
Adel Juaidi ◽  
Ramez Abdallah ◽  
Aiman Albatayneh ◽  
Patrick Dutournie ◽  
...  

Since buildings are one of the major contributors to global warming, efforts should be intensified to make them more energy-efficient, particularly existing buildings. This research intends to analyze the energy savings from a suggested retrofitting program using energy simulation for typical existing residential buildings. For the assessment of the energy retrofitting program using computer simulation, the most commonly utilized residential building types were selected. The energy consumption of those selected residential buildings was assessed, and a baseline for evaluating energy retrofitting was established. Three levels of retrofitting programs were implemented. These levels were ordered by cost, with the first level being the least costly and the third level is the most expensive. The simulation models were created for two different types of buildings in three different climatic zones in Palestine. The findings suggest that water heating, space heating, space cooling, and electric lighting are the highest energy consumers in ordinary houses. Level one measures resulted in a 19–24 percent decrease in energy consumption due to reduced heating and cooling loads. The use of a combination of levels one and two resulted in a decrease of energy consumption for heating, cooling, and lighting by 50–57%. The use of the three levels resulted in a decrease of 71–80% in total energy usage for heating, cooling, lighting, water heating, and air conditioning.


Author(s):  
Jerzy Sowa ◽  
Maciej Mijakowski

A humidity-sensitive demand-controlled ventilation system is known for many years. It has been developed and commonly applied in regions with an oceanic climate. Some attempts were made to introduce this solution in Poland in a much severe continental climate. The article evaluates this system's performance and energy consumption applied in an 8-floor multi-unit residential building, virtual reference building described by the National Energy Conservation Agency NAPE, Poland. The simulations using the computer program CONTAM were performed for the whole hating season for Warsaw's climate. Besides passive stack ventilation that worked as a reference, two versions of humidity-sensitive demand-controlled ventilation were checked. The difference between them lies in applying the additional roof fans that convert the system to hybrid. The study confirmed that the application of demand-controlled ventilation in multi-unit residential buildings in a continental climate with warm summer (Dfb) leads to significant energy savings. However, the efforts to ensure acceptable indoor air quality require hybrid ventilation, which reduces the energy benefits. It is especially visible when primary energy use is analyzed.


Author(s):  
Adrienne B. Little ◽  
Srinivas Garimella

Of the total electricity consumption by the United States in 2006, more than 1% was used on data centers alone; a value that continues to rise rapidly. Of the total amount of electricity a data center consumes, at least 30% is used to cool server equipment. The present study conceptualizes and analyzes a novel paradigm consisting of integrated power, cooling, and waste heat recovery and upgrade systems that considerably lowers the energy footprint of data centers. Thus, on-site power generation equipment is used to supply primary electricity needs of the data center. The microturbine-derived waste heat is recovered to run an absorption chiller that supplies the entire cooling load of the data center, essentially providing the requisite cooling without any additional expenditure of primary energy. Furthermore, the waste heat rejected by the data center itself is boosted to a higher temperature with a heat transformer, with the upgraded thermal stream serving as an additional output of the data center with no additional electrical power input. Such upgraded heat can be used for district heating applications in neighboring residential buildings, or as process heat for commercial end uses such as laundries, hospitals and restaurants. With such a system, the primary energy usage of the data center as a whole can be reduced by about 23 percent while still addressing the high-flux cooling loads, in addition to providing a new income stream through the sales of upgraded thermal energy. Given the large and fast-escalating energy consumption patterns of data centers, this novel, integrated approach to electricity and cooling supply, and waste heat recovery and upgrade will substantially reduce primary energy consumption for this important end use worldwide.


2020 ◽  
Vol 10 (20) ◽  
pp. 7123
Author(s):  
Ricardo Abejón ◽  
Jara Laso ◽  
Marta Rodrigo ◽  
Israel Ruiz-Salmón ◽  
Mario Mañana ◽  
...  

Recent studies have identified that buildings all over the world are great contributors to energy consumption and greenhouse gas emissions. The relationship between the building industry and environmental pollution is continuously discussed. The building industry includes many phases: extraction of raw materials, manufacturing, construction, use, and demolition. Each phase consumes a large amount of energy, and subsequent emissions are released. The life cycle energy assessment (LCEA) is a simplified version of the life cycle assessment (LCA) that focuses only on the evaluation of energy inputs for different phases of the life cycle. Operational energy is the energy required for day-to-day operation processes of buildings, such as heating, cooling and ventilation systems, lighting, as well as appliances. This use phase accounts for the largest portion of energy consumption of the life cycle of conventional buildings. In addition, energy performance certification of buildings is an obligation under current European legislation, which promotes efficient energy use, so it is necessary to ensure that the energy performance of the building is upgraded to meet minimum requirements. For this purpose, this work proposes the consideration of the energy impacts and material resources used in the operation phase of a building to calculate the contribution of these energy impacts as new variables for the energy performance certification. The application of this new approach to the evaluation of university buildings has been selected as a case study. From a methodological point of view, the approach relied on the energy consumption records obtained from energy and materials audit exercises with the aid of LCA databases. Taking into practice the proposed methodology, the primary energy impact and the related emissions were assessed to simplify the decision-making process for the energy certification of buildings. From the results obtained, it was concluded that the consumption of water and other consumable items (paper) are important from energy and environmental perspectives.


Author(s):  
Adrienne B. Little ◽  
Srinivas Garimella

Of the total electricity consumption by the United States in 2006, more than 1% was used on data centers alone; a value that continues to rise rapidly. Of the total amount of electricity a data center consumes, about 30% is used to cool server equipment. The present study conceptualizes and analyzes a novel paradigm consisting of integrated power, cooling, and waste heat recovery and upgrade systems that considerably lower the energy footprint of data centers. Thus, on-site power generation equipment is used to supply primary electricity needs of the data center. The microturbine-derived waste heat is recovered to run an absorption chiller that supplies the entire cooling load of the data center, essentially providing the requisite cooling without any additional expenditure of primary energy. Furthermore, the remaining waste heat rejected by the data center is boosted to a higher temperature with a heat transformer, with the upgraded thermal stream serving as an additional output of the data center with negligible additional electrical power input. Such upgraded heat can be used for district heating applications in neighboring residential or commercial buildings, or as process heat for commercial end uses such as laundries, hospitals, and restaurants, depending on the location of the data center. With such a system, the primary energy usage of the data center as a whole can be reduced by up to 23% while still addressing the high-flux cooling loads, in addition to providing a new income stream through the sales of upgraded thermal energy. Given the large and fast-escalating energy consumption patterns of data centers, this novel, integrated approach to electricity and cooling supply, and waste heat recovery and upgrade will substantially reduce primary energy consumption for this important end use worldwide.


2012 ◽  
Vol 9 (2) ◽  
pp. 65
Author(s):  
Alhassan Salami Tijani ◽  
Nazri Mohammed ◽  
Werner Witt

Industrial heat pumps are heat-recovery systems that allow the temperature ofwaste-heat stream to be increased to a higher, more efficient temperature. Consequently, heat pumps can improve energy efficiency in industrial processes as well as energy savings when conventional passive-heat recovery is not possible. In this paper, possible ways of saving energy in the chemical industry are considered, the objective is to reduce the primary energy (such as coal) consumption of power plant. Particularly the thermodynamic analyses ofintegrating backpressure turbine ofa power plant with distillation units have been considered. Some practical examples such as conventional distillation unit and heat pump are used as a means of reducing primary energy consumption with tangible indications of energy savings. The heat pump distillation is operated via electrical power from the power plant. The exergy efficiency ofthe primary fuel is calculated for different operating range ofthe heat pump distillation. This is then compared with a conventional distillation unit that depends on saturated steam from a power plant as the source of energy. The results obtained show that heat pump distillation is an economic way to save energy if the temperaturedifference between the overhead and the bottom is small. Based on the result, the energy saved by the application of a heat pump distillation is improved compared to conventional distillation unit.


2021 ◽  
Vol 13 (11) ◽  
pp. 6192
Author(s):  
Junghwan Lee ◽  
Jinsoo Kim

This study analyzes the changes in energy consumption of the Korean manufacturing sector using the index decomposition analysis (IDA) method. To capture the production effect based on actual physical activities, we applied the activity revaluation (AR) approach in the analysis. We also developed energy consumption data in terms of primary energy supply to consider conversion loss in the energy sector to avoid any distortions in the intensity effect. The analysis covers every manufacturing subsector in Korea over the period between 2006 and 2018. Combining two distinctive approaches from the previous literature, the AR approach and primary energy-based analysis gives us helpful findings for a climate policy. First, the overall activity effect estimated from the physical output indicator is lower than that from the monetary output indicator. The monetary indicator shows that the share of energy-intensive industries decreases, whereas the physical indicator shows the opposite. Second, in terms of energy efficiency, the intensity effect is estimated as an increasing factor of energy use, whereas inversed results are shown when we use the monetary indicator. Lastly, unlike the previous studies, the AR approach results indicate that Korean manufacturing sectors have been shifting toward an energy-intensive, so it is hard to anticipate positive intensity effects, which means decreasing energy consumption factor, for a while. These results support why analyzing the driving forces of energy consumption through the AR approach and primary energy base is highly recommended.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3912
Author(s):  
Wassim Salameh ◽  
Jalal Faraj ◽  
Elias Harika ◽  
Rabih Murr ◽  
Mahmoud Khaled

In the context of a world energy crisis, the only solution to control the situation is in the management of energy. One of the most important management keys is the optimization of electrical components. This article presents a complete numerical and experimental study aiming for the optimization of electrical water heaters for household use. The optimization conceives the minimization of energy consumption simultaneously with the minimization of time to heat water. Firstly, a thermal model well adapted for the case of heaters is constructed and validated experimentally and then a parametric study is conducted covering all the input power, the volume and the external area of the heater. Results are promising, showing significant energy savings are possible with an optimum setting of these parameters, thus presenting a firm tool for the optimization of heaters.


Author(s):  
Viral K. Patel ◽  
Kyle R. Gluesenkamp

This paper provides an overview of a thermoelectric heat pump clothes dryer which was developed with the aim of reducing the significant primary energy consumption attributed to residential electric clothes drying in the United States (623 TBtu/yr). The use of thermoelectric modules in place of the conventional electric resistance heater resulted in a 40% reduction in the energy consumption of the system, compared to the minimum energy efficiency standard. This was achieved for the first time for a standard test load of 8.45 lb, using a clothes dryer prototype with a thermoelectric heat pump module as the sole heating mechanism. The current experimental prototype was developed after extensive modeling, system design and control optimization, and experimental system-level evaluation of control parameters. The demonstration of improved energy consumption has laid the foundation for future development of this technology.


Sign in / Sign up

Export Citation Format

Share Document