Concentrating Solar Thermal Process Heat for Manganese Ferroalloy Production: Plant Modelling and Thermal Energy Storage Dispatch Optimization

Author(s):  
Tristan Mckechnie ◽  
Craig McGregor ◽  
Gerhard Venter

Abstract This paper investigates the economic benefit of incorporating solar-based preheating of Manganese ore before smelting in electric submerged arc furnaces. Manganese ore is smelted to produce Manganese ferroalloy, a key component in steel production. The smelting process is highly energy intensive, with temperatures up to 1600 °C. The paper discusses the developed methodology for determining the configuration of a concentrating solar thermal (CST) plant to produce high temperature process heat. The CST plant is sized to preheat the ore to 600 °C before it enters the smelter — currently ore enters at ambient temperature. The preheating leads to economic and environmental benefits by offering lower cost heat and reducing carbon emissions for the process.

2020 ◽  
Vol 63 (8) ◽  
pp. 579-590
Author(s):  
V. Ya. Dashevskii ◽  
A. A. Aleksandrov ◽  
V. I. Zhuchkov ◽  
L. I. Leont’ev

Ferrous metallurgical industry is the main consumer of m nese. The production volume of manganese ferroalloys in the world is approximately 1 % of steel production. After the collapse of the Soviet Union, Russian Federation found itself without any manganese ore base. At present, only high-carbon ferromanganese and ferrosilicomanganese are smelted from imported ore in Russia in a limited quantity. The mineral and raw base of manganese ores in Russia is quite large: the balance reserves of manganese ores are about 230 million tons (approximately 2 % of the world), forecast resources – more than 1 billion tons. Quality of the manganese ores is lower than the manganese ores of most major producing countries. Average manganese content in Russian ores is 9 – 23 %. Basis of mineral and raw base of these manganese ores are carbonate ores, share of which is more than 77 %. Manganese ore mining in Russia is sporadic and does not exceed 66 thousand tons per year. Demand of Russian ferroalloy plants, producing manganese ferroalloys, in manganese ores and concentrates is covered by imports. The problem of accelerating the creation of domestic manganese ore base from the position of economic security seems to be very important. It is necessary to solve a number of issues related to the enrichment of poor manganese ores, development of effective technologies for manganese ferroalloys smelting from concentrates obtained after the enrichment of these ores, as well as creation of more advanced methods of manganese concentrates dephosphorization. In the production of manganese ferroalloys from ore to finished alloys, about 50 % of manganese mined from the subsoil is lost; a large number of by-products are formed (sludges of enrichment, slags, screenings of small fractions of ore raw materials and finished products, sludges of smelting process and dust). The use and processing of them allow not only to reduce the consumption of initial mineral raw materials, but also to increase the efficiency of main production and to reduce environmental pollution. Additional extraction of manganese from industrial wastes and improvement of the technological processes for manganese ferroalloys smelting are the ways to increase the through extraction of manganese.


2014 ◽  
Vol 44 (9) ◽  
pp. 617-624 ◽  
Author(s):  
L. A. Polulyakh ◽  
V. Ya. Dashevskii ◽  
Yu. S. Yusfin

Energy ◽  
2021 ◽  
pp. 121153
Author(s):  
Stefan Holler ◽  
Adrian Winkelmann ◽  
Johannes Pelda ◽  
Abdulraheem Salaymeh

Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3731
Author(s):  
Simon Kamerling ◽  
Valéry Vuillerme ◽  
Sylvain Rodat

Using solar power for industrial process heat is an increasing trend to fight against climate change thanks to renewable heat. Process heat demand and solar flux can both present intermittency issues in industrial systems, therefore solar systems with storage introduce a degree of freedom on which optimization, on a mathematical basis, can be performed. As the efficiency of solar thermal receivers varies as a function of temperature and solar flux, it seems natural to consider an optimization on the operating temperature of the solar field. In this paper, a Mixed Integer Linear Programming (MILP) algorithm is developed to optimize the operating temperature in a system consisting of a concentrated solar thermal field with storage, hybridized with a boiler. The MILP algorithm optimizes the control trajectory on a time horizon of 48 h in order to minimize boiler use. Objective function corresponds to the boiler use, for completion of the heat from the solar field, whereas the linear constraints are a simplified representation of the system. The solar field mass flow rate is the optimization variable which is directly linked to the outlet temperature of the solar field. The control trajectory consists of the solar field mass flow rate and outlet temperature, along with the auxiliary mass flow rate going directly to the boiler. The control trajectory is then injected in a 0D model of the plant which performs more detailed calculations. For the purpose of the study, a Linear Fresnel system is investigated, with generic heat demand curves and constant temperature demand. The value of the developed algorithm is compared with two other control approaches: one operating at the nominal solar field output temperature, and the other one operating at the actual demand mass flow rate. Finally, a case study and a sensitivity analysis are presented. The MILP’s control shows to be more performant, up to a relative increase of the annual solar fraction of 4% at 350 °C process temperature. Novelty of this work resides in the MILP optimization of temperature levels presenting high non-linearities, applied to a solar thermal system with storage for process heat applications.


2012 ◽  
Vol 232 ◽  
pp. 609-613
Author(s):  
Ali Baghernejad ◽  
Mahmood Yaghoubi

In the present study, a specific and simple second law based exergoeconomic model with instant access to the production costs is introduced. The model is generalized for a case study of Shiraz solar thermal power plant with parabolic collectors for nominal power supply of 500 kW. Its applications include the evaluation of utility costs such as products or supplies of production plant, the energy costs between process operations of an energy converter such as production of an industry. Also attempt is made to minimize objective function including investment cost of the equipments and cost of exergy destruction for finding optimum operating condition for such plant.


Metals ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 686 ◽  
Author(s):  
Sanjeev Manocha ◽  
François Ponchon

The EU28 total lime demand in 2017 was estimated at about 20 million tons, out of which about 40% are consumed in the iron and steel industry. Steel remains the major consumer after environment and construction. The lime industry is quite mature and consolidated in developed countries, with enough reserves and production to serve regional markets while being fragmented in developing nations where steel producers rely on local sourcing. There is relatively very little trade for lime worldwide. Lime has a critical role at different steps of the steelmaking process, and especially to make a good slag facilitating the removal of sulphur and phosphorus, and for providing a safer platform to withstand high intensity arc plasma in the electric arc furnace (EAF), and violent reactions in the basic oxygen furnace (BOF). Lime quality and quantity has a direct effect on slag quality, which affects metallurgical results, refractory life, liquid metal yield, and productivity, and therefore the total cost of the steel production. In this paper, we present the importance of careful selection in the limestone and calcination process, which influences critical lime quality characteristics. We shall further elaborate on the impact of lime characteristics in the optimization of the steelmaking process, metallurgical benefits, overall cost impact, potential savings, and environmental benefits.


2016 ◽  
Vol 1 ◽  
pp. 4 ◽  
Author(s):  
Marco Cozzini ◽  
Roberto Fedrizzi ◽  
Mauro Pipiciello ◽  
Robert Söll ◽  
Ilyes Ben Hassine ◽  
...  

2009 ◽  
Vol 45 (2) ◽  
pp. 197-206
Author(s):  
Maja Zivic

The processing of waste powders from steel production in electric arc furnaces is a world problem. The presence of Fe, Zn, Cd, Pb, etc. in the powders makes them a valuable source for these metals. Zinc is the metal that is most often utilized, which leads to reduction of environmental pollution. The greatest problem in this connection is the presence of chlorine and fluorine in the powders, which influences the electroextraction of zinc in a significantly negative way. The presented paper shows the results from the study of the possibilities for zinc leaching from powders obtained in the steel production in Bulgaria. A detailed characterization of the powders was made using chemical analysis, XRD, DTA and TGA and M?ssbauer spectroscopy. The results from the powder leaching with different solvents give the reason to recommend a technological scheme for the complete and total processing of the waste powders from steel production.


Sign in / Sign up

Export Citation Format

Share Document