Fuel Economy Results From Diesel Engine Tuning for Steady Speed and Drive Cycle Operation

Author(s):  
James Carl M. Satorre ◽  
Edwin N. Quiros ◽  
Jose Gabriel E. Mercado ◽  
Paul L. Rodgers

Abstract As part of efforts to mitigate climate change by reducing fuel consumption in the transport sector in the Philippines, this paper presents the initial results of an investigation on the effects of engine tuning on fuel economy for different drive cycles using a commercially available piggyback tuning “chip” to modify fuel rail pressure from stock settings of a CRDI diesel passenger van. The drive cycles used in this study were the Japanese 10-15 Mode, US highway fuel economy test (HWFET), and one labeled “SMN” based on a Metro Manila local route. An initial steady state vehicle fuel economy performance map at five speeds per gear position and stock tuning was obtained from chassis dynamometer tests. The same series of tests were done with the tuning chip’s settings of progressively lower rail pressure to identify the setting giving lowest fuel consumption at each gear. Fuel consumption reduction of up to 47% was observed although not all speeds at a given gear and tuning setting gave reduced values. These lowest fuel settings were applied to corresponding gear positions in each of the selected drive cycles resulting to “specific tuning maps” per drive cycle. The test vehicle was then driven with these drive cycle-specific tuning maps and the fuel economy measured. It was found that overall fuel economy decreased with drive cycle-specific tuning settings. It was then decided to try using a constant tuning setting throughout a drive cycle to see if fuel economy improved. Trials with the Japanese 10-15 Mode cycle at different constant lower rail pressure settings likewise gave overall lower fuel economy. However, a more detailed look showed that in the constant-speed portions of the cycle, fuel consumption savings of up to 35% were realized while it worsened in the accelerating and decelerating sections. The drive cycle test results indicate that the engine ECU compensated for the lowered rail pressure, maybe with increased injection duration, to increase the amount of fuel injected to meet the road-load requirements imposed by the drive cycle. Control response instabilities may have also contributed to higher fuel consumption. Engine tuning by rail pressure reduction only was most effective in reducing fuel consumption for steady state driving and ineffective for transient driving under the conditions and methodology of this study.

Author(s):  
Jeffrey James C. Laguitao ◽  
Edwin N. Quiros ◽  
Jose Gabriel E. Mercado ◽  
Paul L. Rodgers

Abstract This paper presents a study on the effects of transient and steady-state vehicle operation on fuel economy and emissions trends of an in-use Euro 2 Asian utility vehicle in the Philippines, with a normally aspirated direct-injection engine, and fueled with different CME-diesel blends designated as B1, B2, B3, B5, B10, B20, B50, & B100 corresponding to increasing CME percentage blends. The vehicle was driven on a chassis dynamometer following the Japanese 10-15 Mode drive cycle and at steady speeds of 40, 60, & 80 kph for fuel consumption and CO, NOx, and THC measurements. PM measurements were not undertaken. Drive cycle results showed that adding CME up to 20% by volume (B20) has a small effect on the heating values, specific fuel consumption (SFC), fuel economy (FE), and maximum power. Relative to neat diesel, the increase in SFC, lower FE and power beyond B20 were attributed to lower heating values at higher blends. CO was practically constant while THC and NOx generally decreased with increasing CME blends. The CO and THC trends were ascribed to overall lean mixtures and increased amount of oxygenated fuel at higher CME blends. B20 yielded the most emissions reduction without performance loss. Steady speed results indicated for all blends, SFC increased with vehicle speed due to higher road load. Above B10, SFC went beyond 5% higher than that for neat diesel and is attributed to lowered heating values of higher blends. The SFC of blends up to B10 approached that of neat diesel as speed increased suggesting more diesel-like combustion characteristics. The blend fuel economy showed an inverse relationship to SFC as expected. Both CO and NOx exhibited slightly decreasing trends with higher blends at all speeds. For a given blend, CO decreased while NOx increased as speed went higher. THC followed bowl-shaped trendlines with blend ratio. THC was high for neat diesel going lowest at B5-B10 and upwards again beyond B10. For a given blend, THC emissions decreased with increasing vehicle speed.


Author(s):  
Peter Vasquez ◽  
Edwin Quiros ◽  
Gerald Jo Denoga ◽  
Robert Michael Corpus ◽  
Robert James Lomotan

Abstract Efforts to mitigate climate change include lowering of greenhouse gas emissions by reducing fuel consumption in the transport sector. Various vehicle technologies and interventions for better fuel economy eventually require chassis dynamometer testing using drive cycles for validation. As such, the methodology to generate these drive cycles from on-road data should produce drive cycles that closely represent actual on-road driving from the fuel economy standpoint. This study presents a comparison of the fuel economy measured from a drive cycle developed using road load energy as a major assessment criterion and the actual on-road fuel economy of a 2013 Isuzu Crosswind utility vehicle used in the UV Express transport fleet in Metro Manila, Philippines. In this approach to drive cycle construction from on-road data, the ratio of the total road load energy of the generated drive cycle to that of the on-road trip is made the same ratio as their respective durations. On-road velocity and fuel consumption were recorded as the test vehicle traversed the 42.5 km. Sucat to Lawton route and vice versa in Metro Manila. Gathered data were processed to generate drive cycles using the modified Markov Chain approach. Three drive cycles of decreasing duration, based on the practicality of testing on a chassis dynamometer, were generated using three arbitrary data compression ratios. These drive cycles were tested using the same vehicle on the chassis dynamometer and compared with the on-road data using road load energy, fuel economy, average speed, and maximum acceleration. For the 893-seconds drive cycle generated, the road load energy error was 3.93% and fuel economy difference of 1.14%. For the 774-seconds cycle generated, the road load energy error was 4.34% and fuel economy difference was 0.91%. For the 664-seconds drive cycle, the road load energy error was 3.68% and fuel economy difference was 0.91%. On-road fuel economy for the 42.5-km. route averaged over nine round trips was 8.785 km/L. Based on the results, the road load energy criterion approach of drive cycle construction methodology can generate drive cycles which can very closely estimate on-road fuel economy.


2021 ◽  
Vol 334 ◽  
pp. 02013
Author(s):  
Vladimir Zhulai ◽  
Vitaly Tyunin ◽  
Alex Shchiyenko ◽  
Alexander Krestnikov

The article considers the problem of the analytical determination of the fuel economy performance of earth-moving machines by the example of the road grader. The values of the road grader fuel consumption when performing the technological operations have been obtained and analyzed. The fuel balance of the EMM in the traction mode is presented. The fuel balance of the motor grader when digging soil has been defined and analyzed.


2013 ◽  
Vol 718-720 ◽  
pp. 1435-1439
Author(s):  
Teng Teng Li ◽  
Kong Jian Qin ◽  
Jun Hua Gao ◽  
Feng Bin Wang

On the road, fuel meter and electric power meter were employed to measure fuel consumption and electricity consumption of two parallel hybrid electric vehicles (PHEVs); Corrected methods recommended by SAE J2711 and GB/T 19754 respectively were used to modify fuel consumption of two vehicles through electricity consumption; According to the result, how total quality and Air-Condition (AC) load affect fuel economy were analyzed. Test results showed that, When K was less than 1%, relative error from calculation results of fuel consumption per 100 km obtained by above two methods was within 0.7%; Compared with AC off condition, fuel consumption per 100 km of PHEVs under AC on condition increased by more than 42%, which caused bad fuel economy, the effect of fuel-saving was decreased by 10% or more accordingly.


2021 ◽  
Vol 13 (13) ◽  
pp. 7348
Author(s):  
Ahmad Zuhairi Muzakir ◽  
Eng Hwa Yap ◽  
Teuku Meurah Indra Mahlia

Final energy use in Malaysia by the transport sector accounts for a consistent share of around 40% and even more in some years within the past two decades. Amongst all modes of transport, land transport dominates and within land transport, private travels are thought to be the biggest contributor. Personal mobility is dominated by the use of conventional internal-combustion-engine-powered vehicles (ICE), with the ownership trend of private cars has not shown any signs of tapering-off. Fuel consumption by private cars is currently not governed by a national policy on fuel economy standards. This is in contrast against not only the many developed economies, but even amongst some of the ASEAN neighbouring countries. The lack of fuel economy standards has resulted in the loss of potentially tremendous savings in fuel consumption and emission mitigation. This study analysed the increase in private vehicle stock to date, the natural fuel economy improvements brought by technology in a business as usual (BAU) situation, and the additional potential energy savings as well as emissions reduction in the ideal case of mandatory fuel economy standards for motor vehicles, specifically cars in Malaysia. The model uses the latest available data, relevant and most current parameters for the simulation and projection of the future scenario. It is found that the application of the fuel economy standards policy for cars in Malaysia is long overdue and that the country could benefit from the immediate implementation of fuel economy standards.


2017 ◽  
Vol 4 (2) ◽  
pp. 44-52
Author(s):  
Calyd T. CERIO

Jeepney occupies not only the streets of the country but also the culture, identity, and values of the Filipino. Aside from it depicts as the “King of the Road” and the “moving icon of the Philippine culture,” it also reflects Filipino’s ingenuity, creativity, craftsmanship, and entrepreneurship. However, these symbolisms and functions are being challenged by modernization and globalization. Is the phase-out of jeepney possible? This paper analyzed the case of a route in Camarines Sur in which jeepneys had faced an unfortunate fate of death. Many factors cause the demise of the jeep, one of which is the entrance of motorcycle taxies or locally known as the “door-to-door.” The case may reflect the conditions of the transport sector in the rural places in the country or may reflect unilinear outcomes of the transport vehicle.


2020 ◽  
Vol 143 (1) ◽  
Author(s):  
Mehmet Fatih Ozkan ◽  
Yao Ma

Abstract The development of vehicle connectivity and autonomy in the ground transportation sector is not only able to enhance traffic safety and driving comfort as well as fuel economy. This study presents a receding-horizon optimization-based control strategy integrated with the preceding vehicle speed prediction model to achieve an eco-driving strategy for connected and automated vehicles (CAVs). In the real traffic scenario where the CAV follows the preceding vehicle on the road, a gated recurrent unit (GRU) network is used to predict the behavior of the preceding vehicle by utilizing the historical inter-vehicle information collected through on-board sensors. Then, a nonlinear model predictive control (NMPC) algorithm is adopted for CAV to minimize the accumulated fuel consumption within the preview horizon. The NMPC approach solves the fuel-optimal speed profile of the CAV, considering a predicted short-term speed preview of the preceding vehicle. With the awareness of the preview speed conditions, the fuel consumption of the CAV is reduced by avoiding unnecessary braking and acceleration, especially during transient traffic conditions. The Pareto front framework is used to examine a trade-off between the vehicle speed prediction accuracy, computational burden, and the fuel consumption of the CAV in the proposed GRU-NMPC design. To analyze the effectiveness of the GRU-NMPC design, adaptive cruise control with constant time headway policy (ACC-CTH) is adopted as a benchmark control design. Comparison results show significant fuel economy improvement of the proposed design and expose possible fuel benefits from vehicle autonomy and sensor fusion technology.


Author(s):  
Rupert Karlo D. Aguila ◽  
Edwin N. Quiros ◽  
Jose Gabriel E. Mercado

Abstract For the past years, Different Philippine local regulations have been imposed to address oil importation and to address environment concerns. One requirement is reduced emission from diesel engines and at the same time reduce the use of fossil fuels for the. In accordance to the Clean Air Act and the Biofuels Act, The Philippine government is looking for possible alternatives to fossil fuels, One of the biodiesel the country is currently using is coconut methyl ester due to the abundance of coconut trees in the country. This research shows the performance and emission characteristics of diesel blended with coconut methyl ester in a CRDi Passenger van and will help the government justify the increase in blend percentage mandated in commercial fuels. This study is investigates 0%, 2%, 5% 10% and 20% Coconut Methyl Ester (CME)-diesel blends. The experiment consisted of Japanese 10-15 standard drive cycle test, steady state test at 40,60, & 80 kph was performed in the Vehicle Research and Testing Laboratory in the University of the Philippines Diliman equipped with chassis dynamometer, fuel flow meter and emissions analyzer. Performance parameters measured are Power, Specific Fuel Consumption and Mileage, while emission characteristics for CO, NOx, THC are measured. PM measurements were not measured for this experiment. In both Drive cycle and steady state test specific fuel consumption and mileage improved with addition of CME, however results showed they are independent of CME percentage. The best improvement was observed with 5%CME blended with neat diesel at 4.8% and 8.5% for drive cycle and steady state test respectively. Majority of the CME-diesel blends showed decrease in emission specifically in CO and THC emission which is consistent to published literature. For both steady state test and drive cycle test up to 29.5% decrease inn CO and up to 64% decrease in THC was observed. This can be attributed to the overall lean mixtures and in the increase of oxygenated fuel at higher CME blends. NOx emission however is consistent for all fuel blends in the drive cycle test while for the steady state test NOx emission is dependnt on the engine speed. Decreasing trend was obtained for 40 and 60 km/h while increasing trend was obtrained at 80 km/h, with respect to %CME. Average power produced for all the speeds was basically constant for all the blends as compared with neat diesel. Lastly, maximum power showed insignificant changes although majority of the blends showed a minimal power reduction as compared to neat diesel.


2021 ◽  
Vol 6 (16) ◽  
Author(s):  
Ahmad Razi Ramli ◽  
Juliana Mohd Abdul Kadir ◽  
Norashikin Ismail ◽  
Akmal Aini Othman ◽  
Patricia C. Melo

The growing clamor about the climate crisis has brought into focus the need for action to drastically reduce CO2 emissions, particularly from the road transport sector. This systematic literature review examines the nexus between fossil fuel subsidy, fuel consumption and CO2 emissions from the road transport sector. Despite numerous research contributions that provide the foundation on this topic, the body of research appears to be quite fragmented with regards to the stated nexus. This systematic literature review consolidates current available research and provides the basis for further research on the connection between fuel subsidy, fuel consumption and CO2 emissions. Keywords: Fossil Fuel Subsidy; Transport Emissions; Subsidy Reform; Systematic Literature Review eISSN: 2398-4287© 2021. The Authors. Published for AMER ABRA cE-Bs by e-International Publishing House, Ltd., UK. This is an open access article under the CC BYNC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). Peer–review under responsibility of AMER (Association of Malaysian Environment-Behaviour Researchers), ABRA (Association of Behavioural Researchers on Asians/Africans/Arabians) and cE-Bs (Centre for Environment-Behaviour Studies), Faculty of Architecture, Planning & Surveying, Universiti Teknologi MARA, Malaysia. DOI:


Author(s):  
Badal Dev Roy ◽  
R. Saravanan

The Turbocharger is a charge booster for internal combustion engines to ensure best engine performance at all speeds and road conditions especially at the higher load.  Random selection of turbocharger may lead to negative effects like surge and choke in the breathing of the engine. Appropriate selection or match of the turbocharger (Turbomatching) is a tedious task and expensive. But perfect match gives many distinguished advantages and it is a one time task per the engine kind. This study focuses to match the turbocharger to desired engine by simulation and on road test. The objective of work is to find the appropriateness of matching of turbochargers with trim 67 (B60J67), trim 68 (B60J68),  trim 70 (A58N70) and trim 72 (A58N72) for the TATA 497 TCIC -BS III engine. In the road-test (data-logger method) the road routes like highway and slope up were considered for evaluation. The operating conditions with respect various speeds, routes and simulated outputs were compared with the help of compressor map.


Sign in / Sign up

Export Citation Format

Share Document