Evaluation of Random Stack Materials for Use in Thermoacoustic Refrigerators

Author(s):  
Xiaoan Mao ◽  
Patcharin Saechan ◽  
Artur J. Jaworski

In a thermoacoustic refrigerator, energy conversion between thermal and acoustic power is achieved by means of an oscillatory motion of a compressible fluid along a solid body referred to as “stack”. Traditionally, stacks have been most often made by arranging large number of thin plates at equal spacing to fill out the cross section of a thermoacoustic resonator. Other geometries such as circular pores, square or hexagonal pores (honeycombs) or pin-arrays can also be considered. Most common irregular geometry includes layers of woven wire mesh stacked along the resonator length. The advantages of thermoacoustic engines over other conventional energy conversion devices lie in their relatively simple hardware assembly, without the need for any dynamic sealing and lubrication. However, the fabrication of stacks, for example made out of very thin parallel plates, is usually costly and impractical, while using pre-fabricated stacks (e.g. ceramic catalytic converter substrates or honeycomb used in aerospace industry) has high materials costs, which limits the cost advantages of thermoacoustic engines. However, many of these problems could be avoided if irregular stack geometries made out of random (very often waste) materials could be used. There is a wide range of such candidate materials, including glass or steel wool, ceramic chippings, waste material from metal machining (swarf, Scourers), beds of glass or metal balls etc. However the main difficulty is the lack of experimental data characterising the performance of such stacks at the design stage. In this paper, the performance of a standing wave thermoacoustic refrigerator with a stack made of a few chosen random materials, is measured and compared to the one with a parallel plate stack. It is hoped that this work will be beneficial for developing low-cost thermoacoustic prime movers and heat pumps.

Author(s):  
J. Schiffmann

Small scale turbomachines in domestic heat pumps reach high efficiency and provide oil-free solutions which improve heat-exchanger performance and offer major advantages in the design of advanced thermodynamic cycles. An appropriate turbocompressor for domestic air based heat pumps requires the ability to operate on a wide range of inlet pressure, pressure ratios and mass flows, confronting the designer with the necessity to compromise between range and efficiency. Further the design of small-scale direct driven turbomachines is a complex and interdisciplinary task. Textbook design procedures propose to split such systems into subcomponents and to design and optimize each element individually. This common procedure, however, tends to neglect the interactions between the different components leading to suboptimal solutions. The authors propose an approach based on the integrated philosophy for designing and optimizing gas bearing supported, direct driven turbocompressors for applications with challenging requirements with regards to operation range and efficiency. Using previously validated reduced order models for the different components an integrated model of the compressor is implemented and the optimum system found via multi-objective optimization. It is shown that compared to standard design procedure the integrated approach yields an increase of the seasonal compressor efficiency of more than 12 points. Further a design optimization based sensitivity analysis allows to investigate the influence of design constraints determined prior to optimization such as impeller surface roughness, rotor material and impeller force. A relaxation of these constrains yields additional room for improvement. Reduced impeller force improves efficiency due to a smaller thrust bearing mainly, whereas a lighter rotor material improves rotordynamic performance. A hydraulically smoother impeller surface improves the overall efficiency considerably by reducing aerodynamic losses. A combination of the relaxation of the 3 design constraints yields an additional improvement of 6 points compared to the original optimization process. The integrated design and optimization procedure implemented in the case of a complex design problem thus clearly shows its advantages compared to traditional design methods by allowing a truly exhaustive search for optimum solutions throughout the complete design space. It can be used for both design optimization and for design analysis.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Sreeharsh Nair ◽  
Mayank Mittal

AbstractThe advent of stricter emission standards has increased the importance of aftertreatment devices and the role of numerical simulations in the evolution of better catalytic converters in order to satisfy these emission regulations. In this paper, a 2-D numerical simulation of a single channel of the monolith catalytic converter is presented by using detailed surface reaction kinetics aiming to investigate the chemical behaviour inside the converter. The model has been developed to study the conversion of carbon monoxide (CO) in the presence of propene (C3H6) for low-temperature combustion (LTC) engine application. The inhibition effect of C3H6 over a wide range of CO inlet concentrations is investigated. Considering both low and high levels of CO concentration at the inlet, the 2-D model predicted better results than their corresponding 1-D counterparts when compared with the experimental data from literature. It was also observed that C3H6 inhibition at high temperatures was significant, particularly for high concentrations of CO compared to low concentrations of CO at the inlet.


Author(s):  
Michele Righi ◽  
Giacomo Moretti ◽  
David Forehand ◽  
Lorenzo Agostini ◽  
Rocco Vertechy ◽  
...  

AbstractDielectric elastomer generators (DEGs) are a promising option for the implementation of affordable and reliable sea wave energy converters (WECs), as they show considerable promise in replacing expensive and inefficient power take-off systems with cheap direct-drive generators. This paper introduces a concept of a pressure differential wave energy converter, equipped with a DEG power take-off operating in direct contact with sea water. The device consists of a closed submerged air chamber, with a fluid-directing duct and a deformable DEG power take-off mounted on its top surface. The DEG is cyclically deformed by wave-induced pressure, thus acting both as the power take-off and as a deformable interface with the waves. This layout allows the partial balancing of the stiffness due to the DEG’s elasticity with the negative hydrostatic stiffness contribution associated with the displacement of the water column on top of the DEG. This feature makes it possible to design devices in which the DEG exhibits large deformations over a wide range of excitation frequencies, potentially achieving large power capture in a wide range of sea states. We propose a modelling approach for the system that relies on potential-flow theory and electroelasticity theory. This model makes it possible to predict the system dynamic response in different operational conditions and it is computationally efficient to perform iterative and repeated simulations, which are required at the design stage of a new WEC. We performed tests on a small-scale prototype in a wave tank with the aim of investigating the fluid–structure interaction between the DEG membrane and the waves in dynamical conditions and validating the numerical model. The experimental results proved that the device exhibits large deformations of the DEG power take-off over a broad range of monochromatic and panchromatic sea states. The proposed model demonstrates good agreement with the experimental data, hence proving its suitability and effectiveness as a design and prediction tool.


Catalysts ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 507
Author(s):  
Chrysovalantis C. Templis ◽  
Nikos G. Papayannakos

Mass and heat transfer coefficients (MTC and HTC) in automotive exhaust catalytic monolith channels are estimated and correlated for a wide range of gas velocities and prevailing conditions of small up to real size converters. The coefficient estimation is based on a two dimensional computational fluid dynamic (2-D CFD) model developed in Comsol Multiphysics, taking into account catalytic rates of a real catalytic converter. The effect of channel size and reaction rates on mass and heat transfer coefficients and the applicability of the proposed correlations at different conditions are discussed. The correlations proposed predict very satisfactorily the mass and heat transfer coefficients calculated from the 2-D CFD model along the channel length. The use of a one dimensional (1-D) simplified model that couples a plug flow reactor (PFR) with mass transport and heat transport effects using the mass and heat transfer correlations of this study is proved to be appropriate for the simulation of the monolith channel operation.


Author(s):  
I Bridle ◽  
S R Woodhead

Degradation of bulk solid product during pneumatic conveying is of concern in a range of process industries. However, prediction of product degradation levels at the conveyor design stage has proved challenging. This paper presents a proposed prediction technique, based on the use of a pilot-sized test facility to provide relevant empirical data. The results of experiments undertaken using malted barley, basmati rice, and granulated sugar are reported. For each bulk solid material, a wide range of conveying conditions have been examined, consistent with common industrial practice. Correlations between predictions and experimental data obtained in an industrial-scale conveyor are presented and discussed.


2021 ◽  
Vol 21 (8) ◽  
pp. 4362-4366
Author(s):  
Ji Yong Hwang ◽  
Chung Wung Bark ◽  
Hyung Wook Choi

The perovskite solar cell is capable of energy conversion in a wide range of wavelengths, from 300 nm to 800 nm, which includes the entire visible region and portions of the ultraviolet and infrared regions. To increase light transmittance of perovskite solar cells and reduce manufacturing cost of perovskite solar cells, soda-lime glass and transparent conducting oxides, such as indium tin oxide and fluorine-doped tin oxide are mainly used as substrates and light-transmitting electrodes, respectively. However, it is evident from the transmittance of soda-lime glass and transparent conductive oxides measured via UV-Vis spectrometry that they absorb all light near and below 310 nm. In this study, a transparent Mn-doped ZnGa2O4 film was fabricated on the incident surface of perovskite solar cells to obtain additional light energy by down-converting 300 nm UV light to 510 nm visible light. We confirmed the improvement of power efficiency by applying a ZnGa2O4:Mn down-conversion layer to perovskite solar cells.


Author(s):  
Zunling Du ◽  
Yimin Zhang

Axial piston pumps (APPs) are the core energy conversion components in a hydraulic transmission system. Energy conversion efficiency is critically important for the performance and energy-saving of the pumps. In this paper, a time-varying reliability design method for the overall efficiency of APPs was established. The theoretical and practical instantaneous torque and flow rate of the whole APP were derived through comprehensive analysis of a single piston-slipper group. Moreover, as a case study, the developed model for the instantaneous overall efficiency was verified with a PPV103-10 pump from HYDAC. The time-variation of reliability for the pump was revealed by a fourth-order moment technique considering the randomness of working conditions and structure parameters, and the proposed reliability method was validated by Monte Carlo simulation. The effects of the mean values and variance sensitivity of random variables on the overall efficiency reliability were analyzed. Furthermore, the optimized time point and design variables were selected. The optimal structure parameters were obtained to meet the reliability requirement and the sensitivity of design variables was significantly reduced through the reliability-based robust design. The proposed method provides a theoretical basis for designers to improve the overall efficiency of APPs in the design stage.


Author(s):  
Nguyen Hong Nam ◽  
Le Gia Thanh Truc ◽  
Khuong Duy Anh ◽  
Laurent Van De Steene

Agricultural and forest residues are potential sources of renewable energy in various countries. However, the difference in characteristics of biomass resources presents challenges for energy conversion processes which often require feedstocks that are physically and chemically consistent. This study presented a complete and comprehensive database of characteristics of a wide range of agricultural and forest residues. Moisture, bulk density, calorific value, proximate and elemental compositions, as well as cellulose, hemicellulose, and lignin compositions of a wide range of biomass residues were analyzed. The major impacts of the variability in biomass compositions to biochemical and thermochemical processes were also discussed.


Catalysts ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 611 ◽  
Author(s):  
Anita Haeussler ◽  
Stéphane Abanades ◽  
Julien Jouannaux ◽  
Anne Julbe

Due to the requirement to develop carbon-free energy, solar energy conversion into chemical energy carriers is a promising solution. Thermochemical fuel production cycles are particularly interesting because they can convert carbon dioxide or water into CO or H2 with concentrated solar energy as a high-temperature process heat source. This process further valorizes and upgrades carbon dioxide into valuable and storable fuels. Development of redox active catalysts is the key challenge for the success of thermochemical cycles for solar-driven H2O and CO2 splitting. Ultimately, the achievement of economically viable solar fuel production relies on increasing the attainable solar-to-fuel energy conversion efficiency. This necessitates the discovery of novel redox-active and thermally-stable materials able to split H2O and CO2 with both high-fuel productivities and chemical conversion rates. Perovskites have recently emerged as promising reactive materials for this application as they feature high non-stoichiometric oxygen exchange capacities and diffusion rates while maintaining their crystallographic structure during cycling over a wide range of operating conditions and reduction extents. This paper provides an overview of the best performing perovskite formulations considered in recent studies, with special focus on their non-stoichiometry extent, their ability to produce solar fuel with high yield and performance stability, and the different methods developed to study the reaction kinetics.


1994 ◽  
Vol 116 (3) ◽  
pp. 577-587 ◽  
Author(s):  
S. H. Kim ◽  
N. K. Anand

Two-dimensional turbulent heat transfer between a series of parallel plates with surface mounted discrete block heat sources was studied numerically. The computational domain was subjected to periodic conditions in the streamwise direction and repeated conditions in the cross-stream direction (Double Cyclic). The second source term was included in the energy equation to facilitate the correct prediction of a periodically fully developed temperature field. These channels resemble cooling passages in electronic equipment. The k–ε model was used for turbulent closure and calculations were made for a wide range of independent parameters (Re, Ks/Kf, s/w, d/w, and h/w). The governing equations were solved by using a finite volume technique. The numerical procedure and implementation of the k–ε model was validated by comparing numerical predictions with published experimental data (Wirtz and Chen, 1991; Sparrow et al., 1982) for a single channel with several surface mounted blocks. Computations were performed for a wide range of Reynolds numbers (5 × 104–4 × 105) and geometric parameters and for Pr = 0.7. Substrate conduction was found to reduce the block temperature by redistributing the heat flux and to reduce the overall thermal resistance of the module. It was also found that the increase in the Reynolds number decreased the thermal resistance. The study showed that the substrate conduction can be an important parameter in the design and analysis of cooling channels of electronic equipment. Finally, correlations for the friction factor (f) and average thermal resistance (R) in terms of independent parameters were developed.


Sign in / Sign up

Export Citation Format

Share Document