Vortex Control by an Artificial Muscle Based on the Conducting Polymer

Author(s):  
Masaki Fuchiwaki ◽  
Kazuhiro Tanaka ◽  
Shingo Sewa ◽  
Kazuo Onishi

We have proposed the flow control by using an artificial muscle based on the conducting polymer. In order to utilize the artificial muscle for flow control, it is important to clarify the mechanical properties on the artificial muscle based on the conducting polymer. The purpose of this study is to clarify the mechanical properties on artificial muscle and possibility of flow control by using it. We have measured the tensile force generated by artificial muscle in the distilled water. Moreover, we have observed the actuation of artificial muscle based on the conducting polymer in water tunnel. The tensile force of artificial muscle increased as the electrode potential increased. The averaged maximum tensile force did not depend on the scan rate of electrode potential. It depended on the electrode potential and was almost constant. However, the time for reaching maximum tensile force depended on the scan rate. The artificial muscle performed the bending actuation sufficiently not only static water but also running water. Therefore, it can be considered that the artificial muscle will be applied to the actuator for flow control.

2003 ◽  
Vol 2003.7 (0) ◽  
pp. 63-64
Author(s):  
Masaki FUCHIWAKI ◽  
Kazuhiro TANAKA ◽  
Shingo Sewa ◽  
Kazuo Onishi

2002 ◽  
Vol 2002.6 (0) ◽  
pp. 105-106
Author(s):  
Masaki FUCHIWAKI ◽  
Kazuhiro TANAKA ◽  
Keiichi KANETO

MRS Advances ◽  
2017 ◽  
Vol 2 (49) ◽  
pp. 2689-2694
Author(s):  
Karla A. Gaspar-Ovalle ◽  
Juan V. Cauich-Rodriguez ◽  
Armando Encinas

ABSTRACTNanofibrous mats of poly ε-caprolactone (PCL) were fabricated by electrospinning. The nanofiber structures were investigated and characterized by scanning electron microscope, differential scanning calorimetry, thermogravimetric analysis, dynamic mechanical analysis, static water-contact-angle analysis and mechanical properties. The results showed that the nanofibrous PCL is an ideal biopolymer for cell adhesion, owing to its biocompatibility, biodegradability, structural stability and mechanical properties. Differential scanning calorimetry results showed that the fibrous structure of PCL does not alter its crystallinity. Studies of the mechanical properties, wettability and degradability showed that the structure of the electrospun PCL improved the tensile modulus, tensile strength, wettability and biodegradability of the nanotemplates. To evaluate the nanofibrous structure of PCL on cell adhesion, osteoblasts cells were seeded on these templates. The results showed that both adhesion and proliferation of the cells is viable on these electrospun PCL membranes. Thus electrospinning is a relatively inexpensive and scalable manufacturing technique for submicron to nanometer diameter fibers, which can be of interest in the commodity industry.


Small ◽  
2015 ◽  
Vol 11 (41) ◽  
pp. 5498-5504 ◽  
Author(s):  
Seungae Lee ◽  
Jin-Yong Hong ◽  
Jyongsik Jang

2021 ◽  
Vol 16 ◽  
pp. 155892502110448
Author(s):  
Mingmei Zhao ◽  
Jinqiu Zhang ◽  
Zhizhao Peng ◽  
Jian Zhang

To analyze the effect of nano-solid particles on the mechanical properties of shear thickening fluid (STF) and its Kevlar composite fabric. In this study, nano-silica and polyethylene glycol (PEG 200) were used as dispersed and continuous phases. Nano-graphite and nano-diamond particles were used as additives to prepare STF and Kevlar composite fabric. Study the friction characteristics and rheological characteristics of STF at different temperatures. Explore the STF’s mechanical response under transient high-speed impact conditions through the split Hopkinson pressure bar experiment. The mechanical properties of STF-Kevlar fabric are studied through yarn pull-out test and burst experiments. The experimental results show that the intermolecular repulsive force of STF is enhanced under a high-temperature environment, and shear thickening effect is reduced. Nano-diamond particles strengthen the contact coupling force and contact probability between the particle clusters, so that the maximum viscosity of the system reaches 1679 Pa s, the thickening ratio reaches 318 times, and the rheological properties of the shear thickening fluid are improved. The results of the SHPB experiment show that the STF can complete a dynamic response within a 50–75 µs time range, and the maximum stress can reach 78 MPa. The bullet’s incident kinetic energy is not only transformed into thermal energy and phase change energy of solid-liquid conversion, but also into frictional energy between particles. The mechanical experiments of STF-Kevlar composite fabrics show that the tensile force value of STF5-Kevlar is the largest (10.3 N/13.5 N), and the tensile force of neat Kevlar was the smallest (4.3 N/4.9 N). The maximum bearing capacity (0.3 kN) and absorption energy (51.8 J) of Neat Kevlar are less than those of STF1-Kevlar (3.2 kN, 116.7 J) and STF3-Kevlar (1.9 kN, 88.2 J), and STF5-Kevlar (4.7 kN, 143.3 J). Fabric’s failure mode is converted from partial yarn extraction to overall deformation and rupture of the fabric. Therefore, by changing the solid additives’ parameters, the STF and the composite fabric’s mechanical properties can be effectively controlled, which provides a reference for preparing the STF and fabric composite materials.


Materials ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4016
Author(s):  
Qian Wang ◽  
Junqi Shen ◽  
Shengsun Hu ◽  
Guancheng Zhao ◽  
Jie Zhou

High-quality joining of dissimilar alloys between Fe-36Ni alloy and 304L stainless steel is essential in the manufacturing of LNG tanker. In this study, lap joints of Fe-36Ni and 304L dissimilar alloys were fabricated by a pulsed gas tungsten arc welding (P-GTAW) process. The effects of low-frequency pulse on the appearance, microstructure and mechanical properties of the Fe-36Ni/304L lap joints was investigated. With the increase of frequency, the feature sizes of α (the transition angle of the upper surface of Fe-36Ni to the surface of the weld bead) and R (shortest distance between weld root and weld surface) exhibited downtrend and uptrend, respectively, while La (the maximum weld width of lower sheet) and P (the maximum weld penetration of lower sheet) changed in a smaller range. Fusion zone (FZ) is mainly composed of γ phase and M23C6 during solidification, and M23C6 particles are distributed on the grain boundaries of the cells, which reduced the mechanical properties of joint. The average hardness between 110 HV1 and 136 HV1 is lower than that of the base metals. Fractures of all joints located at the Fe-36Ni side near the weld, and a dimple fracture in all samples indicated a ductile fracture. This study found that the heat input values remain 198.86 J mm−1 and increased pulse frequency can improve the maximum tensile force. The average maximum tensile force of the lap weld is 11.95 kN when pulsed frequency is 15 Hz.


2018 ◽  
Vol 6 (45) ◽  
pp. 12396-12406 ◽  
Author(s):  
Sushant Sharma ◽  
Vipin Kumar ◽  
Abhishek K. Pathak ◽  
Tomohiro Yokozeki ◽  
Shailesh Kumar Yadav ◽  
...  

High-strength conducting polymer composites are in high demand in modern aerospace and automobile industries.


2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Dong-ze Qin ◽  
Wei Zhang ◽  
Shu-Yun Zhang ◽  
Tian-Ji Guo ◽  
Shui-Yuan Pei ◽  
...  

The humanitarian damage caused by the unexploded submunitions is one of the hot issues of concern to the international community at present. A portion of the submunition that did not explode was caused by a break at the connection between the ribbon riveting and the fuze. According to the physical structure of the submunition and the trajectory into which it was ejected, we analyzed the forces of the submunition in flight, deduced the related mathematical models, and clarify the key elements of the mechanics. In this paper, the commercial simulation software was used to calculate the mechanical properties of the ribbon. And the variation regularity between drop velocity and straightening force of ribbon are revealed. And the response characteristics of different material ribbon with different sizes of riveting holes and riveting joints under tensile action were simulated. The simulation results show that, in the trajectory environment with 30 m/s~55 m/s typical stream speed, the tensile force of the ribbon is less than 300 N, and the application concentration of the connecting parts of the riveting joint and the ribbon will not cause the failure of the kevlar ribbon, but it will cause the failure of the nylon ribbon. In order to verify the variation of the tension of kevlar ribbons in different trajectory environments, we designed the experimental scheme of tension test of the ribbon straightening section of submunition and conducted experiments. Experimental results and numerical simulation results revealed the same law. This paper provides effective technical support for solving the problem of unexploded submunitions.


Sign in / Sign up

Export Citation Format

Share Document