Effects of an Underbody Device on the Characteristics of a Trailer Truck Wake Region

Author(s):  
M. Ibrahim ◽  
M. Agelin-Chaab

The aerodynamics of bluff bodies and flow separation are encountered in many industrial applications. Flow separation causes significant pressure fluctuations that can yield undesirable effects such as vibration, noise, and drag. It is well-known that at highway speeds, over 50% of the fuel is used by a road vehicle to overcome aerodynamic drag. Due to these reasons, bluff body aerodynamics has been the subject of intensive research interests for many decades. In this paper, a new concept of an underbody aerodynamic device is used to modify the turbulent wake region of a bluff body. In particular, the underbody device was designed in order to allow for the recirculating flow to reattach and exit the underside of the bluff body while increasing the average speed of the flow and preventing side winds from disturbing the flow. This significantly reduces the underbody recirculation zone, which is a major source of drag. In addition, this ensures that the flow exits with minimum turbulence to reduce the size of the bluff body’s wake. The studies were conducted using the RANS based turbulence model, k-ω SST in ANSYS Fluent. A width-based Reynolds number of 1.1 × 106 was used to conduct the simulations in order to validate the baseline model with NASA’s wind tunnel data; which include the surface pressure coefficients and a drag coefficient. The paper focuses on the changes in the model’s wake that were introduced due to the device and their influence on the underside flow. The results showed that the device significantly reduced the recirculation at the underside of the bluff body. This was found to increase the coefficient of pressure at the base of the model, which reduced the size of the wake. These changes in the flow field resulted in an overall drag coefficient reduction of 4.1%.

Author(s):  
Z. Gu ◽  
M. A. R. Sharif

Abstract The two-dimensional turbulent recirculating flow fields behind a V-shaped bluff body have been investigated numerically. Similar bluff bodies are used in combustion chambers for flame stabilization. The governing transport equations in conservative form are solved by a pressure based predictor-corrector method. The standard k-ϵ turbulence closure model and a boundary fitted multi-block curvilinear grid system are used in the computation. The code is validated against turbulent flow over a backward facing step problem. The predicted flow field behind the bluff body is also compared with experiment. It is found that while the qualitative features of the flow are well predicted, there is quantitative disagreement between the measurement and prediction. This disagreement can be partially attributed to the k-ϵ turbulence model which is known to be inadequate for recirculating flows. Parametric investigation of the flow field by varying the shape and size of the bluff body is also performed and the results are reported.


2014 ◽  
Vol 2014 ◽  
pp. 1-17 ◽  
Author(s):  
Shubham Singh ◽  
M. Zunaid ◽  
Naushad Ahmad Ansari ◽  
Shikha Bahirani ◽  
Sumit Dhall ◽  
...  

CFD simulations using ANSYS FLUENT 6.3.26 have been performed on a generic SUV design and the settings are validated using the experimental results investigated by Khalighi. Moreover, an add-on inspired by the concept presented by Englar at GTRI for drag reduction has been designed and added to the generic SUV design. CFD results of add-on model and the basic SUV model have been compared for a number of aerodynamic parameters. Also drag coefficient, drag force, mean surface pressure, mean velocities, and Cp values at different locations in the wake have been compared for both models. The main objective of the study is to present a new add-on device which may be used on SUVs for increasing the fuel efficiency of the vehicle. Mean pressure results show an increase in the total base pressure on the SUV after using the device. An overall reduction of 8% in the aerodynamic drag coefficient on the add-on SUV has been investigated analytically in this study.


2020 ◽  
Vol 61 (12) ◽  
Author(s):  
Antoine Legeai ◽  
Olivier Cadot

Abstract The paper investigates the role of geometrical asymmetric modifications of a rectangular flat-backed body on the properties of the recirculating flow at a Reynolds number $$Re=1.8\times 10^5$$ R e = 1.8 × 10 5 . The reference model has two reflectional symmetries denoted $$s_y$$ s y and $$s_z$$ s z in both spanwise directions. The flow is subjected to the static instability that leads to two mirrored wake states breaking the symmetry $$s_y$$ s y . Two families of geometrical variation of the fore-body and after-body are studied, each breaking one of the reflectional symmetries of the reference model. Geometrical modifications that preserve $$s_y$$ s y evidence possibilities of bistable dynamics suppression although the static instability persists. Geometrical modifications that do not preserve $$s_y$$ s y produces a large unbalance of both wake states in accordance to recent observations on real cars (Bonnavion et al. in J Wind Eng Ind Aerodyn 184:77–89, 2019). Results offer perspectives for potential drag reduction induced by appropriate coupling of bluff body geometry and wake state selection. Graphic abstract


Author(s):  
Anu R. Nair ◽  
Fred Barez ◽  
Ernie Thurlow ◽  
Metin Ozen

Heavy commercial vehicles due to their un-streamlined body shapes are aerodynamically inefficient due to higher fuel consumption as compared to passenger vehicles. The rising demand and use of fossil fuel escalate the amount of carbon dioxide emitted to the environment, thus more efficient tractor-trailer design becomes necessary to be developed. Fuel consumption can be reduced by either improving the driveline losses or by reducing the external forces acting on the truck. These external forces include rolling resistance and aerodynamic drag. When driving at most of the fuel is used to overcome the drag force, thus aerodynamic drag proves an area of interest to study to develop an efficient tractor-trailer design. Tractor-trailers are equipped with standard add-on components such as roof defectors, boat tails and side skirts. Modification of these components helps reduce drag coefficient and improve fuel efficiency. The objective of this study is to determine the most effective geometry of trailer add-on devices in semi-truck trailer design to reduce the drag coefficient to improve fuel efficiency and vehicle stability. The methodology consisted of CFD analysis on Mercedes Benz Actros using ANSYS FLUENT. The simulation was performed on the tractor-trailer at a speed of 30m/s. The analysis was performed with various types of add-on devices such as side skirts, boat tail and vortex generators. From the simulation results, it was observed that addition of tractor-trailer add-on devices proved beneficial over modifying trailer geometry. Combination of add-on devices in the trailer underbody, rear and front sections was more beneficial in reducing drag coefficient as compared to their individual application. Improving fuel efficiency by 17.74%. Stability of the tractor-trailer is improved due to the add-on devices creating a streamlined body and reducing the low-pressure region at the rear end of the trailer.


Author(s):  
Jian Liu ◽  
Safeer Hussain ◽  
Lei Wang ◽  
Gongnan Xie ◽  
Bengt Sundén ◽  
...  

A pocket cavity is generated at the connection of two parts, such as the transition part between the low pressure turbine (LPT) and outlet guide vane (OGV) in a gas turbine engine. A bluff body, working as a heat transfer enhancement part or supporting strength part, has tremendous engineering applications in turbomachinery. In the present work, the effect of the pocket on the heat transfer of endwall with a bluff body in the rear part of gas turbine is investigated. A simplified triangular pocket cavity is built in a rectangular channel and two bluff bodies, a cylinder or a cuboid is attached downstream on the endwall. The heat transfer and fluid flow on the endwall are investigated experimentally and numerically. Liquid Crystal Thermography (LCT) is employed to measure the heat transfer over the pocket surface with Reynolds number ranging from 87,597, to 218,994. The turbulent flow details are provided by numerically calculations based on the commercial software Fluent 17.0. Based on the results, high heat transfer areas are usually found at the boundary of the pocket cavity and vortex street shedding regions around the bluff body. When a pocket cavity is placed in the upstream of a bluff body, the endwall heat transfer around the bluff body is obviously decreased due to the disturbance by the pocket. There are no recirculating flows in front of the tested cylinder while this is not applicable for the cuboid case. The recirculating flow behind the bluff bodies forms a three-dimensional flow structure rotating in two directions.


1975 ◽  
Vol 71 (1) ◽  
pp. 145-160 ◽  
Author(s):  
C. J. Apelt ◽  
G. S. West

The work reported in part 1 has been extended to cover flows past circular cylinders with wake splitter plates having 2 [les ] L/D [les ] 7 and to include flows past normal flat plates with splitter plates having L/D [les ] 3·7. Pressure distributions and wake Strouhal numbers were measured and visualization studies carried out. The results obtained indicate that no further changes would be produced by lengthening the splitter plates beyond the limits tested.The combined results of parts 1 and 2 provide coherent descriptions of the effects of wake splitter plates for all values of L/D of significance for the two profiles, which are representative of two distinct classes of bluff bodies, viz., those with cross-sections of curvilinear shape for which the flow separation points are not determined uniquely by the geometry and those for which the separation points are fixed.


2016 ◽  
Vol 846 ◽  
pp. 18-22
Author(s):  
Rohit Bhattacharya ◽  
Abouzar Moshfegh ◽  
Ahmad Jabbarzadeh

The flow over bluff bodies is separated compared to the flow over streamlined bodies. The investigation of the fluid flow over a cylinder with a streamwise slit has received little attention in the past, however there is some experimental evidence that show for turbulent regime it reduces the drag coefficient. This work helps in understanding the fluid flow over such cylinders in the laminar regime. As the width of the slit increases the drag coefficient keeps on reducing resulting in a narrower wake as compared to what is expected for flow over a cylinder. In this work we have used two different approaches in modelling a 2D flow for Re=10 to compare the results for CFD using finite volume method (ANSYS FLUENTTM) and Lattice Boltzmann methods. In all cases cylinders of circular cross section have been considered while slit width changing from 10% to 40% of the cylinder diameter. . It will be shown that drag coefficient decreases as the slit ratio increases. The effect of slit size on drag reduction is studied and discussed in detail in the paper. We have also made comparison of the results obtained from Lattice Boltzmann and finite volume methods.


Author(s):  
Mohammad Mehdi Tavakol ◽  
Mohammad Eslami

Fluid flow around single or multiple bluff bodies mounted on a surface has great significance in science and engineering. Understanding the characteristics of different vortices formed around wall-mounted bodies is quite necessary for different applications. Although the case of a single surface mounted cube has been studied extensively, only little attention has been paid to the flow around two or more rectangular blocks in array. Therefore, a CFD code is developed to calculate three dimensional steady state laminar fluid flow around two cuboids of arbitrary size and configuration mounted on a surface in free stream conditions. The employed numerical scheme is finite volume and SIMPLE algorithm is used to treat pressure and velocity coupling. Results are presented for two rectangular blocks of the different size mounted on a surface in various inline arrangements. Streamlines are plotted for blocks of different size ratio. Velocity and pressure distributions are also plotted in the wake region behind the obstacles. It is shown that how the behavior of flow field and vortical structures depend on the respective size and location of the larger block in comparison with the case of two inline wall mounted cubes of the same size.


2021 ◽  
pp. 2150267
Author(s):  
Bo Luo ◽  
Wuli Chu ◽  
Song Yan ◽  
Zhengjing Shen ◽  
Haoguang Zhang

The noise emitted from an axial fan has become one of the primary concerns for many industrial applications. This paper presents the work to predict the noise generation and investigate sound sources in a low speed axial fan. Computational fluid dynamics modeling is conducted using Scale Adaptive Simulation for the unsteady flow field. The sound predictions by the acoustic analogy are in good agreement with the experimental data. The results from this study show that the aerodynamic interaction between the blades and outlet vanes has a major contribution to the radiated noise spectrum. Two types of sources of narrowband humps are identified in the axial fan. The first is found at the leading edge of the blade tip, which is related to the interaction of coherent flow structures in the blade tip region. The second is found in the vicinity of the blade hub, which can be attributed to the recirculating flow and hub vortex. The noise below the frequency of 1500 Hz is mainly due to the blade-outlet vane aerodynamic interaction, manifested as the tonal sound at BPF and its harmonics, whereas above 1500 Hz the broadband component of sound is mainly related to the turbulent boundary layers.


Sign in / Sign up

Export Citation Format

Share Document