Stirling Power Unit: Impact of a Controlled Displacer Piston on Efficiency and Power Output

Author(s):  
Anna Winkelmann ◽  
Eric J. Barth

This paper presents the design and dynamic model of a novel “controlled Stirling power unit” with an independently controlled displacer piston. Breaking the coupling traditionally seen in Stirling devices between the power piston and the displacer piston, realized either kinematically or dynamically, allows an additional control degree of freedom that can be used to shape the thermodynamic cycle independent of the load. The device presented combines such a controlled Stirling engine (called a pressurizer) with a power extraction unit. The dynamic models of three different power extraction units are presented. The dynamic model builds on a previous experimentally validated first-principles model of a Stirling pressurizer. The model is a lumped parameter compressible fluid power dynamic model that captures the pressure dynamics of the high pressure helium working fluid as it is affected in time by volume, mass and heat flux changes. The dynamic model of a pressurizer combined with a linear electric generator is used to study different displacer motion profiles with regard to the shape of the thermodynamic cycle, and the effect on the power output and efficiency of the device.

Author(s):  
Antti Uusitalo ◽  
Teemu Turunen-Saaresti ◽  
Juha Honkatukia ◽  
Piero Colonna ◽  
Jaakko Larjola

This paper presents a study aimed at evaluating the use of siloxanes as the working fluid of a small-capacity (≈10kWe) ORC turbogenerator based on the “high-speed technology” concept, combining the turbine, the pump, and the electrical generator on one shaft, whereby the whole assembly is hermetically sealed, and the bearings are lubricated by the working fluid. The effects of adopting different siloxane working fluids on the thermodynamic cycle configuration, power output, and on the turbine and component design are studied by means of simulations. Toluene is included into the analysis as a reference fluid in order to make comparisons between siloxanes and a suitable low molecular weight hydrocarbon. The most influential working fluid parameters are the critical temperature and pressure, molecular complexity and weight, and, related to them, the condensation pressure, density and specific enthalpy over the expansion, which affect the optimal design of the turbine. The fluid thermal stability is also extremely relevant in the considered applications. Exhaust gas heat recovery from a 120 kW diesel engine is considered in this study. The highest power output, 13.1 kW, is achieved with toluene as the working fluid, while, among siloxanes, D4 provides the best simulated performance, namely 10.9 kW. The high molecular weight of siloxanes is beneficial in low power capacity applications, because it leads to larger turbines with larger blade heights at the turbine rotor outlet, and lower rotational speed if compares, for instance, to toluene.


Author(s):  
Mubarak S. Alrabie ◽  
Faisal N. Altamimi ◽  
Muhammad H. Altarrgemy ◽  
Fatemeh Hadi ◽  
Muhammad K. Akbar ◽  
...  

There has been a recent surge in interest for Tesla turbines used in renewable energy applications such as power extraction from low-quality steam generated from geothermal or concentrated solar sources as well as unfiltered particle-laden biomass combustion products. High interest in these bladeless turbines motives renewed theoretical and experimental study. Despite this renewed interest, no systematic Tesla turbine design process based in foundational theory has been published in the peer reviewed engineering literature. A design process is thus presented which is flexible, allowing an engineering designer to select and address goals beyond simply maximizing turbine output power. This process is demonstrated by designing a Tesla turbine where Reynolds number can be easily varied while holding all other parameters fixed. Tesla turbines are extremely sensitive to inter-disk spacing. It is therefore desirable to design the experiment to avoid turbine disassembly/reassembly between tests; this assures identical disk spacing and other parameters for all tests. It is also desirable to maintain similar working fluid mass flow rate through the turbine in all tests to minimize influence of losses at the nozzle impacting shaft power output differently across experiments. Variation in Reynolds number over more than two orders of magnitude is achieved by creating a set of two-component working fluid mixtures of water and corn syrup. Increasing mixture mass fraction of corn syrup achieves increased working fluid viscosity but only small increase in density with a corresponding decrease in working fluid Reynolds number. The overall design goal is to create a turbine that allows modulating Reynolds number impact on Tesla turbine performance to be evaluated experimentally. The secondary goal is to size the turbine to maximize sensitivity to changes in Reynolds number to make experimental measurement easier. The presented example design process results in a Tesla turbine with 8-cm-outer-diameter and 4-cm-inner-diameter disks. The turbine will be able to access a range of Reynolds numbers from 0.49 < Rem < 99.50. This range represents a Reynolds number ratio of Rem,max/Rem,min = 202.8, more than two orders of magnitude and spanning the lower part of the laminar range. The turbine’s expected power output will be Ẇ = 0.47 Watts with a delivered torque of 0.024 mN-m at a rotation rate of ωmax = 1197 rev/min. Combining the analytical equations underpinning the design process with similarity arguments, it is shown that shrinking the Tesla turbine’s physical scale drives the Reynolds number toward 0. The resulting velocity difference between the working fluid and the turbine disks gets driven toward infinity, which makes momentum transfer and the resulting turbine efficiency extremely high. In other words, unlike conventional turbines whose efficiency drops as they are scaled down, the performance of Tesla turbines will increase as they are made smaller. Finally, it is shown through similarity scaling arguments that the 8-cm-diameter turbine resulting from the design process of this paper and running liquid Ethylene Glycol working fluid can be used to evaluate and approximate the performance of a 3-mm-diameter Tesla turbine powered by products of combustion in air.


2020 ◽  
Vol 92 (1) ◽  
pp. 10906
Author(s):  
Jeroen Schoenmaker ◽  
Pâmella Gonçalves Martins ◽  
Guilherme Corsi Miranda da Silva ◽  
Julio Carlos Teixeira

Organic Rankine Cycle (ORC) systems are increasingly gaining relevance in the renewable and sustainable energy scenario. Recently our research group published a manuscript identifying a new type of thermodynamic cycle entitled Buoyancy Organic Rankine Cycle (BORC) [J. Schoenmaker, J.F.Q. Rey, K.R. Pirota, Renew. Energy 36, 999 (2011)]. In this work we present two main contributions. First, we propose a refined thermodynamic model for BORC systems accounting for the specific heat of the working fluid. Considering the refined model, the efficiencies for Pentane and Dichloromethane at temperatures up to 100 °C were estimated to be 17.2%. Second, we show a proof of concept BORC system using a 3 m tall, 0.062 m diameter polycarbonate tube as a column-fluid reservoir. We used water as a column fluid. The thermal stability and uniformity throughout the tube has been carefully simulated and verified experimentally. After the thermal parameters of the water column have been fully characterized, we developed a test body to allow an adequate assessment of the BORC-system's efficiency. We obtained 0.84% efficiency for 43.8 °C working temperature. This corresponds to 35% of the Carnot efficiency calculated for the same temperature difference. Limitations of the model and the apparatus are put into perspective, pointing directions for further developments of BORC systems.


Author(s):  
Thomas Kinsey ◽  
Guy Dumas

A new concept of hydrokinetic turbine using oscillating hydrofoils to extract energy from water currents (tidal or gravitational) is presented, tested and analyzed in the present investigation. Due to its rectangular extraction plane, this technology is particularly well suited for river beds and shallow waters near the coasts. The present turbine is a 2 kW prototype, composed of two rectangular oscillating hydrofoils of aspect ratio 7 in a tandem spatial configuration. The pitching motion of each hydrofoil is coupled to their cyclic heaving motion through four-link mechanisms which effectively yield a one-degree-of-freedom system driving a speed-controlled electric generator. The turbine has been mounted on a custom-made pontoon boat and dragged on a lake at different velocities. Instantaneous extracted power has been measured and cycle-averaged for several water flow velocities and hydrofoil oscillation frequencies. Results are demonstrated to be self-consistent and validate our extensive 2D flow simulation database. The present data show optimal performances of the oscillating hydrofoils concept at a reduced frequency of about 0.12, at which condition the measured power extraction efficiency reaches 40% once the overall losses in the mechanical system are taken into account. Further measurements of power extraction with a single oscillating hydrofoil have also been performed by taking out the downstream hydrofoil of the tandem pair. Those measurements favorably compare, quantitatively, with available 3D CFD predictions. The 40% hydrodynamic efficiency of this first prototype exceeds expectation and reaches levels comparable to the best performances achievable with modern rotor-blades turbines. It thus demonstrates the promising potential of the oscillating hydrofoils technology to efficiently extract power from an incoming water flow.


Author(s):  
Giovanni Manente ◽  
Randall Field ◽  
Ronald DiPippo ◽  
Jefferson W. Tester ◽  
Marco Paci ◽  
...  

This article examines how hybridization using solar thermal energy can increase the power output of a geothermal binary power plant that is operating on geothermal fluid conditions that fall short of design values in temperature and flow rate. The power cycle consists of a subcritical organic Rankine cycle using industrial grade isobutane as the working fluid. Each of the power plant units includes two expanders, a vaporizer, a preheater and air-cooled condensers. Aspen Plus was used to model the plant; the model was validated and adjusted by comparing its predictions to data collected during the first year of operation. The model was then run to determine the best strategy for distributing the available geothermal fluid between the two units to optimize the plant for the existing degraded geofluid conditions. Two solar-geothermal hybrid designs were evaluated to assess their ability to increase the power output and the annual energy production relative to the geothermal-only case.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Wei Jiang ◽  
Yating Shi ◽  
Dehua Zou ◽  
Hongwei Zhang ◽  
Hong Jun Li

Purpose The purpose of this paper is to achieve the optimal system design of a four-wheel mobile robot on transmission line maintenance, as the authors know transmission line mobile robot is a kind of special robot which runs on high-voltage cable to replace or assist manual power maintenance operation. In the process of live working, the manipulator, working end effector and the working environment are located in the narrow space and with heterogeneous shapes, the robot collision-free obstacle avoidance movement is the premise to complete the operation task. In the simultaneous operation, the mechanical properties between the manipulator effector and the operation object are the key to improve the operation reliability. These put forward higher requirements for the mechanical configuration and dynamic characteristics of the robot, and this is the purpose of the manuscript. Design/methodology/approach Based on the above, aiming at the task of tightening the tension clamp for the four-split transmission lines, the paper proposed a four-wheel mobile robot mechanism configuration and its terminal tool which can adapt to the walking and operation on multi-split transmission lines. In the study, the dynamic models of the rigid robot and flexible transmission line are established, respectively, and the dynamic model of rigid-flexible coupling system is established on this basis, the working space and dynamic characteristics of the robot have been simulated in ADAMS and MATLAB. Findings The research results show that the mechanical configuration of this robot can complete the tightening operation of the four-split tension clamp bolts and the motion of robot each joint meets the requirements of driving torque in the operation process, which avoids the operation failure of the robot system caused by the insufficient or excessive driving force of the robot joint torque. Originality/value Finally, the engineering practicability of the mechanical configuration and dynamic model proposed in the paper has been verified by the physical prototype. The originality value of the research is that it has double important theoretical significance and practical application value for the optimization of mechanical structure parameters and electrical control parameters of transmission line mobile robots.


Author(s):  
Qian Wang ◽  
Chenkun Qi ◽  
Feng Gao ◽  
Xianchao Zhao ◽  
Anye Ren ◽  
...  

The contact process of a space docking device needs verification before launching. The verification cannot only rely on the software simulation since the contact dynamic models are not accurate enough yet, especially when the geometric shape of the device is complex. Hardware-in-the-loop simulation is a choice to perform the ground test, where the contact dynamic model is replaced by a real device and the real contact occurs. However, the Hardware-in-the-loop simulation suffers from energy increase and instability since time delay is unavoidable. The existing delay compensation methods are mainly focused on a uniaxial or three-dimensional contact. In this paper, a force-based delay compensation method is proposed for the hardware-in-the-loop simulation of a six degree-of-freedom space contact. A six degree-of-freedom dynamic model of the spacecraft motion is derived, and a six degree-of-freedom delay compensation method is proposed. The delay is divided into track delay and measurement delay, which are compensated individually. Experiment results show that the proposed delay compensation method is effective for the six degree-of-freedom space contact.


Solar Energy ◽  
2002 ◽  
Author(s):  
Shaoguang Lu ◽  
D. Yogi Goswami

A novel combined power/refrigeration thermodynamic cycle is optimized for thermal performance in this paper. The cycle uses ammonia-water binary mixture as a working fluid and can be driven by various heat sources, such as solar, geothermal and low temperature waste heat. It could produce power as well as refrigeration with power output as a primary goal. The optimization program, which is based on the Generalized Reduced Gradient (GRG) algorithm, can be used to optimize for different objective functions. Examples that maximize second law efficiency, work output and refrigeration output are presented, showing the cycle may be optimized for any desired performance parameter. In addition, cycle performance over a range of ambient temperatures was investigated. It was found that for a source temperature of 360K, which is in the range of flat plate solar collectors, both power and refrigeration outputs are achieved under optimum conditions. All performance parameters, including first and second law efficiencies, power and refrigeration output decrease as the ambient temperature goes up. On the other hand, for a source of 440K, optimum conditions do not provide any refrigeration. However, refrigeration can be obtained even for this temperature under non-optimum performance conditions.


Author(s):  
Max F. Platzer ◽  
Nesrin Sarigul-Klijn ◽  
J. Young ◽  
M. A. Ashraf ◽  
J. C. S. Lai

Vast ocean areas of planet Earth are exposed year-round to strong wind currents. We suggest that this untapped ocean wind power be exploited by the use of sailing ships. The availability of constantly updated meteorological information makes it possible to operate the ships in ocean areas with optimum wind power so that the propulsive ship power can be converted into electric power by means of ship-mounted hydro-power generators. Their electric power output then is fed into ship-mounted electrolyzers to convert sea water into hydrogen and oxygen. In this paper we estimate the ship size, sail area and generator size to produce a 1.5 MW electrical power output. We describe a new oscillating-wing hydro-power generator and present results of model tests obtained in a towing tank. Navier-Stokes computations are presented to provide an estimate of the power extraction efficiency and drag coefficient of such a generator which depends on a range of parameters such as foil maximum pitch angles, plunge amplitude, phase between pitch and plunge and load. Also, we present a discussion of the feasibility of sea water electrolysis and of the re-conversion of hydrogen and oxygen into electricity by means of shore-based hydrogen-oxygen power plants.


2003 ◽  
Vol 125 (2) ◽  
pp. 223-229 ◽  
Author(s):  
Gunnar Tamm ◽  
D. Yogi Goswami

A combined thermal power and cooling cycle proposed by Goswami is under intensive investigation, both theoretically and experimentally. The proposed cycle combines the Rankine and absorption refrigeration cycles, producing refrigeration while power is the primary goal. A binary ammonia-water mixture is used as the working fluid. This cycle can be used as a bottoming cycle using waste heat from a conventional power cycle or as an independent cycle using low temperature sources such as geothermal and solar energy. An experimental system was constructed to demonstrate the feasibility of the cycle and to compare the experimental results with the theoretical simulation. Results showed that the vapor generation and absorption condensation processes work experimentally, exhibiting expected trends, but with deviations from ideal and equilibrium modeling. The potential for combined turbine work and refrigeration output was evidenced in operating the system. Analysis of losses showed where improvements could be made, in preparation for further testing over a broader range of operating conditions.


Sign in / Sign up

Export Citation Format

Share Document