Exonomy Analysis for the Selection of the Most Cost-Effective Pneumatic Drive Solution

Author(s):  
Elvira Rakova ◽  
Jürgen Weber

Today pneumatic drives are widely used to perform various motion tasks. They distinguish themselves through low purchase price and robust design, but show high energy consumption in comparison with electric drives. Existing energy saving measures lead to the reduction of energy consumption, but at the same time they cause the increase of the life cycle costs. All in all, the selection of pneumatic drives has to be done regarding their functionality, efficiency and costs. In this paper the novel Exonomy approach is presented for the selection of the most cost-effective pneumatic drive solution. Developed analysis enables 3 steps. First step includes the new approach for the sizing of pneumatic cylinders based on exergy-energy balance. The term Sizing Factor (SF) is introduced to perform the grade of over sizing of the actuator due to the loss occurred in the system. The second step provides the information about energy consumption. The last step enables the information about life cycle costs of the system and gains the data about amortization time based on Life Cycle Costs (LCC). In the current study all steps of Exonomy analysis has been applied to the vertical as well as to the horizontal pneumatic drives. This study has identified SF for various loading mass and velocities, typical for handling machines. The simulation models were validated with the help of the measurement results. Summarizing, a new formula is proposed to choose the design parameters of the drive. And finally, the quid-line is presented to choose the most cost-effective drive solution.

Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3287
Author(s):  
Alireza Tabrizikahou ◽  
Piotr Nowotarski

For decades, among other industries, the construction sector has accounted for high energy consumption and emissions. As the energy crisis and climate change have become a growing concern, mitigating energy usage is a significant issue. The operational and end of life phases are all included in the building life cycle stages. Although the operation stage accounts for more energy consumption with higher carbon emissions, the embodied stage occurs in a time-intensive manner. In this paper, an attempt has been made to review the existing methods, aiming to lower the consumption of energy and carbon emission in the construction buildings through optimizing the construction processes, especially with the lean construction approach. First, the energy consumption and emissions for primary construction materials and processes are introduced. It is followed by a review of the structural optimization and lean techniques that seek to improve the construction processes. Then, the influence of these methods on the reduction of energy consumption is discussed. Based on these methods, a general algorithm is proposed with the purpose of improving the construction processes’ performance. It includes structural optimization and lean and life cycle assessments, which are expected to influence the possible reduction of energy consumption and carbon emissions during the execution of construction works.


Author(s):  
Arash Aziminejad ◽  
Andrew W. Lee

Ethernet was commercially introduced in 1980 and standardized in 1985 as IEEE 802.3. Due to the instability and unreliability of the initial introduction, safety critical systems have been slow to adapt Ethernet technologies. It is only until the Information Age brought on by the globalization of Internet in the 1990s that network gears become more cost effective, reliable, and technically suitable. With many Ethernet technologies to pick from, selection of a suitable network topology can be challenging. This paper offers insight on the problem of the optimum choice of an Ethernet technology for the purpose of safety critical system. Example of a typical CBTC system will be given along with the key design parameters and several Ethernet technologies analyzed. Simulation models are built on the basis of the two most common Ethernet technologies to provide means of comparison, and numerical results are presented in the paper.


Robotics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 33
Author(s):  
Florian Stuhlenmiller ◽  
Steffi Weyand ◽  
Jens Jungblut ◽  
Liselotte Schebek ◽  
Debora Clever ◽  
...  

Modern industry benefits from the automation capabilities and flexibility of robots. Consequently, the performance depends on the individual task, robot and trajectory, while application periods of several years lead to a significant impact of the use phase on the resource efficiency. In this work, simulation models predicting a robot’s energy consumption are extended by an estimation of the reliability, enabling the consideration of maintenance to enhance the assessment of the application’s life cycle costs. Furthermore, a life cycle assessment yields the greenhouse gas emissions for the individual application. Potential benefits of the combination of motion simulation and cost analysis are highlighted by the application to an exemplary system. For the selected application, the consumed energy has a distinct impact on greenhouse gas emissions, while acquisition costs govern life cycle costs. Low cycle times result in reduced costs per workpiece, however, for short cycle times and higher payloads, the probability of required spare parts distinctly increases for two critical robotic joints. Hence, the analysis of energy consumption and reliability, in combination with maintenance, life cycle costing and life cycle assessment, can provide additional information to improve the resource efficiency.


2021 ◽  
Author(s):  
Amir Fereidouni Kondri

This report presents the methodology for determining least cost energy efficient upgrade solutions in new residential housing using brute force sequential search (BFSS) method for integration into the reference house to reduce energy consumption while minimizing the net present value (NPV) of life cycle costs. The results showed that, based on the life cycle cost analysis of 30 years, the optimal upgrades resulted in the average of 19.25% (case 1), 31% (case 2a), and 21% (case 2b) reduction in annual energy consumption. Economic conditions affect the sequencing of the upgrades. In this respect the preferred upgrades to be performed in order are; domestic hot water heating, above grade wall insulation, cooling systems, ceiling insulation, floor insulation, heat recovery ventilator, basement slab insulation and below grade wall insulation. When the gas commodity pricing becomes high, the more energy efficient upgrades for domestic hot water (DHW) get selected at a cost premium.


Author(s):  
Arun Unnikrishnan ◽  
P. V. M. Rao

Continuous need to increase productivity and reliability in machining has led to high-performance machines that are often characterized by high energy demands. As a result, energy minimization is identified as one of the key goals in machining. With the availability of improved predictive models for energy estimation in machining, energy-conscious process planning for machining is now possible. The present work focuses on the assessment of process plans of machined parts from energy consumption point of view. An experimentally validated model for energy estimation is first presented. Using this model two important process planning variables on energy consumption in machining has been studied. Firstly selection of tool paths including curvilinear tool paths has been considered from energy consumption point of view. Secondly, strategies for the selection of cutting parameters for roughing, semi-finishing and finishing from energy consumption perspective are discussed.


Energies ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1731 ◽  
Author(s):  
Francesco Nicoletti ◽  
Cristina Carpino ◽  
Mario A. Cucumo ◽  
Natale Arcuri

Glazing surfaces strongly affect the building energy balance considering heat losses, solar gains and daylighting. Appropriate operation of the screens is required to control the transmitted solar radiation, preventing internal overheating while assuring visual comfort. Consequently, in the building design phase, solar control systems have become crucial devices to achieve high energy standards. An operation based on well-defined control strategies can help to reduce cooling energy consumption and ensure appropriate levels of natural lighting. The present study aims at investigating the effect of smart screening strategies on the energy consumption of a test building designed in the Mediterranean climate. With the aim of automatically setting the inclination of venetian blind slats, the necessary equations are analytically found out and applied. Equations obtained are based on the position of the sun with respect to the wall orientation. In the case of a cloudy day or an unlit surface, empirical laws are determined to optimize the shielding. These are extrapolated through energy simulations conducted with the EnergyPlus software. Finally, using the same software, the actual benefits obtained by the method used are assessed, in terms of energy and CO2 emissions saved in a test environment.


Energies ◽  
2019 ◽  
Vol 12 (16) ◽  
pp. 3038 ◽  
Author(s):  
José Sánchez Ramos ◽  
MCarmen Guerrero Delgado ◽  
Servando Álvarez Domínguez ◽  
José Luis Molina Félix ◽  
Francisco José Sánchez de la Flor ◽  
...  

The reduction of energy consumption in the residential sector presents substantial potential through the implementation of energy efficiency improvement measures. Current trends involve the use of simulation tools which obtain the buildings’ energy performance to support the development of possible solutions to help reduce energy consumption. However, simulation tools demand considerable amounts of data regarding the buildings’ geometry, construction, and frequency of use. Additionally, the measured values tend to be different from the estimated values obtained with the use of energy simulation programs, an issue known as the ‘performance gap’. The proposed methodology provides a solution for both of the aforementioned problems, since the amount of data needed is considerably reduced and the results are calibrated using measured values. This new approach allows to find an optimal retrofitting project by life cycle energy assessment, in terms of cost and energy savings, for individual buildings as well as several blocks of buildings. Furthermore, the potential for implementation of the methodology is proven by obtaining a comprehensive energy rehabilitation plan for a residential building. The developed methodology provides highly accurate estimates of energy savings, directly linked to the buildings’ real energy needs, reducing the difference between the consumption measured and the predictions.


Energies ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 3446 ◽  
Author(s):  
Ivan Mareev ◽  
Dirk Sauer

The overhead catenary truck is an interesting technology for long-haul transportation with heavy-duty trucks because it can combine the advantage of energy supply via catenary while driving and the flexibility of a battery truck on routes without catenary using the traction battery. This study investigates the energy consumptions of overhead catenary trucks on German highways and considers different configurations for the traction battery and catenary power system. Afterwards the life cycle costs of overhead catenary trucks are calculated for a specified long-haul transportation scenario and the results are compared to battery electric truck and diesel truck using the findings of a previous study by the authors. The energy consumption of the considered overhead catenary trucks is approximately equal to that of a battery electric truck but only about a half of the equivalent energy consumption of a conventional diesel truck. According to the cost assumptions in this study, the total life cycle costs of overhead catenary trucks can be in the range of the conventional diesel truck, showing the competitiveness of this alternative truck technology.


Author(s):  
Paolo Cicconi ◽  
Anna Costanza Russo ◽  
Mariorosario Prist ◽  
Francesco Ferracuti ◽  
Michele Germani ◽  
...  

Nowadays, electromagnetic high-frequency induction is very used for different non-contact heating applications such as the molding process. Every molding process requires the preheating and the thermal maintenance of the molds, to enhance the filling phase and the quality of the final products. In this context, an induction heating system, mostly, is a customized equipment. The design and definition of an induction equipment depends on the target application. This technology is highly efficient and performant, however it provides a high-energy consumption. Therefore, optimization strategies are very suitable to reduce energy cost and consumption. The proposed paper aims to define a method to optimize the induction heating of a mold in terms of time, consumption, and achieved temperature. The proposed optimization method involves genetic algorithms to define the design parameters related to geometry and controller. A test case describes the design of an induction heating system for a polyurethane molding process, which is the soles foaming. This case study deals with the multi-objective optimization of parameters such as the geometrical dimensions, the inductor sizing, and the controller setting. The multi-objective optimization aims to reduce the energy consumption and to increase the wall temperature of the mold.


2019 ◽  
Vol 14 (3) ◽  
pp. 129-142
Author(s):  
Madeeha Altaf ◽  
Frances Hill

The construction of fully glazed commercial building facades responsible for high energy consumption has become a common architectural practice worldwide irrespective of the climate. This paper presents the methodology to optimize the Window to Wall Ratio (WWR) with and without daylight utilization to reduce energy consumption in office buildings for the climate of Lahore, Pakistan, using a simulation tool COMFEN. The impacts of solar heat and daylight entering through the building façade with reference to different WWR and orientation were explored for the selection of optimum WWR. The optimum WWR was selected on the basis of least energy consumption whilst achieving a threshold lighting level. When daylight is not utilized, the energy demand is minimized by the lowest possible WWR. With daylight utilization, energy demand is optimized by use of WWRs of 13% to 30% according to orientation. Optimum WWR with daylight utilization offered a more balanced solution. The methodology used in this study can be applied to any location around the world to find optimum WWR for any glazing type.


Sign in / Sign up

Export Citation Format

Share Document