A Real-Time Spatial SOFC Model for Hardware-Based Simulation of Hybrid Systems

Author(s):  
Dimitri Hughes ◽  
William J. Wepfer ◽  
Kevin Davies ◽  
J. Christopher Ford ◽  
Comas Haynes ◽  
...  

Solid oxide fuel cell (SOFC)/ gas turbine (GT) hybrid systems possess the capability to nearly double the efficiency of standard coal-fired power plants which are currently being used for large scale power production. For the purposes of investigating and developing this technology, a SOFC/GT hybrid test facility was developed at the U.S. DOE National Energy Technology Laboratory (NETL) in Morgantown, WV as part of the Hybrid Performance (HyPer) project. The HyPer facility utilizes hardware-in-the-loop technology to simulate coupled SOFC operation with gas turbine hardware in a hybrid arrangement. This paper describes and demonstrates the capabilities of the one-dimensional, real-time operating SOFC model that has been developed and successfully integrated into the HyPer facility. The model presented is designed to characterize SOFC operation over a broad and extensive operating range including inert heating and cooling, standard “on-design” conditions and extreme off-design conditions. The model receives dynamic, system-dependent modeling inputs from facility hardware and calculates a comprehensive set of SOFC operational responses, thus simulating SOFC operation while coupled with a gas turbine. In addition to characterizing SOFC operation, the model also drives the only heat source in the facility to represent fuel cell subsystem release of thermal effluent to the turbine subsystem. Operating parameters such as solid and oxidant stream temperatures, fuel stream compositions, current density, Nernst potential and polarization losses are produced by the model in spatiotemporal manner. The capability of the model to characterize SOFC operation, within dynamic hybrid system feedback, through inert heat up and a step change in load is presented and analyzed.

Author(s):  
Valentina Zaccaria ◽  
Alberto Traverso ◽  
David Tucker

The theoretical efficiencies of gas turbine fuel cell hybrid systems make them an ideal technology for the future. Hybrid systems focus on maximizing the utilization of existing energy technologies by combining them. However, one pervasive limitation that prevents the commercialization of such systems is the relatively short lifetime of fuel cells, which is due in part to several degradation mechanisms. In order to improve the lifetime of hybrid systems and to examine long-term stability, a study was conducted to analyze the effects of electrochemical degradation in a solid oxide fuel cell (SOFC) model. The SOFC model was developed for hardware-in-the-loop simulation with the constraint of real-time operation for coupling with turbomachinery and other system components. To minimize the computational burden, algebraic functions were fit to empirical relationships between degradation and key process variables: current density, fuel utilization, and temperature. Previous simulations showed that the coupling of gas turbines and SOFCs could reduce the impact of degradation as a result of lower fuel utilization and more flexible current demands. To improve the analytical capability of the model, degradation was incorporated on a distributed basis to identify localized effects and more accurately assess potential failure mechanisms. For syngas fueled systems, the results showed that current density shifted to underutilized sections of the fuel cell as degradation progressed. Over-all, the time to failure was increased, but the temperature difference along cell was increased to unacceptable levels, which could not be determined from the previous approach.


1977 ◽  
Vol 99 (4) ◽  
pp. 580-586 ◽  
Author(s):  
E. W. Mihalek ◽  
C. N. Shen

Gas turbine power plants are increasingly finding use as prime movers in Naval and commercial vessels, at-sea drilling platforms, and land-based power generating stations. With this rise in usage, the life of the machine becomes a consideration when operation in a marine environment is necessary. Limited data are available on the subject of marine aerosols and even less information can be found on the necessary requirements for effective separators for the ship-encountered marine environment. In order to specify the inlet system performance required by the new classes of gas turbine powered U.S. Navy ships, the Naval Ship Engineering Center (NAVSEC) has funded a gas turbine engine inlet separator test program to be performed at the Naval Air Propulsion Test Center (NAPTC) as one phase of a total inlet development program. This paper discusses the NAPTC sea-salt aerosol test facility and the real-time test techniques and instrumentation utilized.


2006 ◽  
Vol 3 (3) ◽  
pp. 234-241 ◽  
Author(s):  
Rodolfo Taccani ◽  
Diego Micheli

Pressurized high temperature fuel cells and gas turbine integrated power systems are receiving growing attention as capable of reaching very high electrical conversion efficiency even in small size power plants. In this system the fuel and the oxidant (air) enter the cell after being compressed. The fuel oxidation reaction occurs predominantly within the fuel cell. The reaction is completed in a combustion chamber and the pressurized combustion products are exhausted through a turbine. The dynamic interdependences related to the integration of the fuel cell and the gas turbine are not completely understood and unexpected complications and dangers might arise. In fact as a consequence of both the relatively large volume of the pressurized portion of the plant and the shape of the stalled characteristic of available compressors, the plant could be affected by the inception of fluid-dynamic instabilities. In particular, surge could be detected in the transient off-design operational conditions occurring during plant regulation, start up and shut down. The paper presents a new experimental fuel cell gas turbine simulation facility that has been constructed at the Mechanical Engineering Department of the University of Trieste, Italy. The facility was designed to examine the effects of transient events on the dynamics of these systems. The theoretical analysis of the plant is completed using a dynamic model of the system purposely developed.


Author(s):  
Matteo C. Romano ◽  
Stefano Campanari ◽  
Vincenzo Spallina ◽  
Giovanni Lozza

Application of large scale high temperature fuel cells on syngas fuel produced from coal would be a turning point in the power generation sector, dramatically improving the efficiency and the environmental performance of coal-fired power plants. The purpose of this study is the assessment of a system constituted by a SOFC-based hybrid cycle integrated with a coal gasification process. In this system, syngas produced in a high efficiency, dry feed, oxygen blown, entrained flow Shell gasifier is cooled, depurated from particulate and sulfur compounds and reheated; the clean syngas feeds a pressurized SOFC together with high pressure air generated by the compressor of a gas turbine. After combustion of unconverted syngas, fuel cell exhausts are expanded and cooled, providing heat to a bottoming steam cycle for an efficient energy recovery. A high integration between gasification and power islands is necessary in order to obtain an elevated efficiency: the heat recovery system from syngas cooling is carefully arranged to provide thermal power for clean syngas reheating, air preheating and steam generation. The paper presents a preliminary analysis of literature results and a discussion of the thermodynamic implications arising from the use of different primary fuels in a fuel cell-gas turbine cycle. Then the work presents a detailed thermodynamic analysis of the proposed IGFC layout, assessing the effect of SOFC operating pressure on power balance and net plant efficiency. A sensitivity analysis on the variation of fuel and air utilization in the fuel cell is also performed. Results show that the present innovative SOFC-based power system may achieve an efficiency gain of 7–11 percentage points, with respect to an advanced IGCC based on state of the art technology.


Author(s):  
Hossein Ghezel-Ayagh ◽  
Robert Sanderson ◽  
Jim Walzak

FuelCell Energy Inc. (FCE) is developing ultra high efficiency Direct FuelCell/Turbine® (DFC/T®) hybrid power plants. Present activities are focused both on the demonstration of the DFC/T concept in small packaged hybrid power generation units for distributed generation, and the design of multi-megawatt (Multi-MW) hybrid systems for the wholesale electric power market. The development of Multi-MW DFC/T systems has been focused on the on the design of power plants with efficiencies approaching 75% (LHV of natural gas). The design efforts included thermodynamic cycle analysis of key gas turbine parameters such as compression ratio. The power plant designs were studied for near-term deployment utilizing the existing commercially available gas turbines and long-term deployment requiring advanced gas turbine technologies. A new fuel cell cluster concept was developed for mechanical design of Multi-MW systems. The concept utilizes the existing one-MW fuel cell modules as the building block for the Multi-MW hybrid systems.


Author(s):  
Dieter Bohn ◽  
Nathalie Po¨ppe ◽  
Joachim Lepers

The present paper reports a detailed technological assessment of two concepts of integrated micro gas turbine and high temperature (SOFC) fuel cell systems. The first concept is the coupling of micro gas turbines and fuel cells with heat exchangers, maximising availability of each component by the option for easy stand-alone operation. The second concept considers a direct coupling of both components and a pressurised operation of the fuel cell, yielding additional efficiency augmentation. Based on state-of-the-art technology of micro gas turbines and solid oxide fuel cells, the paper analyses effects of advanced cycle parameters based on future material improvements on the performance of 300–400 kW combined micro gas turbine and fuel cell power plants. Results show a major potential for future increase of net efficiencies of such power plants utilising advanced materials yet to be developed. For small sized plants under consideration, potential net efficiencies around 70% were determined. This implies possible power-to-heat-ratios around 9.1 being a basis for efficient utilisation of this technology in decentralised CHP applications.


Author(s):  
Mohamed Gadalla ◽  
Nabil Al Aid

The purpose of this paper is to conduct a complete comparative, energy and 2nd low analyses between different types of fuel cells integrated with a gas turbine power plant. Different levels of modeling for the solid oxide fuel cell (SOFC), the proton exchange membrane fuel cell (PEMFC) and the integrated systems are to be presented. The overall system performance is analyzed by employing individual models and further applying energy and exergetic analyses for different configurations of gas turbine power cycles. The study includes applying different proposed methods and techniques to enhance the overall efficiency of the integrated cycle. After performing the complete technical management of the complete system, a comparative study between conventional and PEMFC and SOFC cycles is investigated to highlight the corresponding advantages and disadvantages of each system. The following systems are tested and evaluated: (a) Conventional Gas Turbine System with a combustion Chamber (b) Integrated SOFC Stack into a Gas Turbine System (c) The Proposed Integrated System with both SOFC and PEMFC.


Sign in / Sign up

Export Citation Format

Share Document