Implementation of a Model-Based Methodology Aimed at Detecting Degradation and Faulty Operation in SOFC Systems

Author(s):  
Dario Marra ◽  
Cesare Pianese ◽  
Marco Sorrentino

The paper focuses on a model-based methodology aimed at developing suitable diagnostics strategies to detect degradation level and faulty operation in solid oxide fuel cell (SOFC) systems. The methodology is based on the “inverse” use of a 1-D SOFC stack model to estimate cell parameters from measured variables. Modeling features allow simulating both co- and counter-flow planar SOFC with a good compromise between accuracy and computational burden, thus enhancing final implementation in a variety of optimization procedures. Main objective is to identify those model parameters that are not directly measurable in the real SOFC system, e.g. electrolyte and electrode Ohmic resistance. The inputs are the real-system measurable variables, such as stack voltage and current, inlet mass flow and temperatures. Once unmeasurable variables are identified, they are compared to corresponding reference values to generate suitable residuals, depending on which SOFC stack faulty conditions can be eventually detected and isolated and the stack degradation state can be estimated. The proposed model-based algorithm is suitable in SOFC stack monitoring and diagnosis, thus offering a high potential tool for improving SOFC system safety and durability for on-field applications.

Author(s):  
Yinan Zhang ◽  
Yong Liu ◽  
Peng Han ◽  
Chunyan Miao ◽  
Lizhen Cui ◽  
...  

Cross-domain recommendation methods usually transfer knowledge across different domains implicitly, by sharing model parameters or learning parameter mappings in the latent space. Differing from previous studies, this paper focuses on learning explicit mapping between a user's behaviors (i.e. interaction itemsets) in different domains during the same temporal period. In this paper, we propose a novel deep cross-domain recommendation model, called Cycle Generation Networks (CGN). Specifically, CGN employs two generators to construct the dual-direction personalized itemset mapping between a user's behaviors in two different domains over time. The generators are learned by optimizing the distance between the generated itemset and the real interacted itemset, as well as the cycle-consistent loss defined based on the dual-direction generation procedure. We have performed extensive experiments on real datasets to demonstrate the effectiveness of the proposed model, comparing with existing single-domain and cross-domain recommendation methods.


Author(s):  
Kenyu Uehara ◽  
Takashi Saito

Abstract We have modeled dynamics of EEG with one degree of freedom nonlinear oscillator and examined the relationship between mental state of humans and model parameters simulating behavior of EEG. At the IMECE conference last year, Our analysis method identified model parameters sequentially so as to match the waveform of experimental EEG data of the alpha band using one second running window. Results of temporal variation of model parameters suggested that the mental condition such as degree of concentration could be directly observed from the dynamics of EEG signal. The method of identifying the model parameters in accordance with the EEG waveform is effective in examining the dynamics of EEG strictly, but it is not suitable for practical use because the analysis (parameter identification) takes a long time. Therefore, the purpose of this study is to test the proposed model-based analysis method for general application as a neurotechnology. The mathematical model used in neuroscience was improved for practical use, and the test was conducted with the cooperation of four subjects. model parameters were experimentally identified approximately every one second by using least square method. We solved a binary classification problem of model parameters using Support Vector Machine. Results show that our proposed model-based EEG analysis is able to discriminate concentration states in various tasks with an accuracy of over 80%.


2013 ◽  
Vol 658 ◽  
pp. 555-559
Author(s):  
Xiao Feng Zhu ◽  
Yong Zhang ◽  
Zhao Feng Lu ◽  
Yong Ma

This article establish a coupled thermo-hydraulic mathematical model for steam network by adopting a set of equations. Here, identification is defined as process in which a number of Steam Network model parameters are adjusted until the model mimics behavior of the real Steam Network as closely as possible. Test result indicates the advantage of genetic algorithm.


ACTA IMEKO ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 3
Author(s):  
Pavol Dolinsky ◽  
Imrich Andras ◽  
Linus Michaeli ◽  
Jan Saliga

This article introduces a new electrocardiogram (ECG) signal model based on geometric signal properties. Instead of the artificial functions used in common ECG models, the proposed model is based on the modelling of real ECG signals divided into time segments. Each segment has been modelled using simple geometrical forms. The final ECG signal model is represented by the sequence of parameters of the base functions. Parameter variations allow for the generation of different waveforms for each subsequent heartbeat without mixing up the PQRST waves order. Two basic models utilize slightly modified elementary functions, which are computationally simple. A combination of both models allows for the modelling of irregularities in the consecutive heartbeats of the specific ECG waveforms. Respiratory, noise, and powerline interference can be added in order to make the generated ECG signal more realistic. The model parameters are estimated by differential evolution optimization and a comparison between the modelled ECG and the acquired signal. The proposed models are tested by the database included in the LabVIEW Biomedical Toolkit and ECG records in the MIT-BIH arrhythmia database.


2010 ◽  
Vol 38 (3) ◽  
pp. 228-244 ◽  
Author(s):  
Nenggen Ding ◽  
Saied Taheri

Abstract Easy-to-use tire models for vehicle dynamics have been persistently studied for such applications as control design and model-based on-line estimation. This paper proposes a modified combined-slip tire model based on Dugoff tire. The proposed model takes emphasis on less time consumption for calculation and uses a minimum set of parameters to express tire forces. Modification of Dugoff tire model is made on two aspects: one is taking different tire/road friction coefficients for different magnitudes of slip and the other is employing the concept of friction ellipse. The proposed model is evaluated by comparison with the LuGre tire model. Although there are some discrepancies between the two models, the proposed combined-slip model is generally acceptable due to its simplicity and easiness to use. Extracting parameters from the coefficients of a Magic Formula tire model based on measured tire data, the proposed model is further evaluated by conducting a double lane change maneuver, and simulation results show that the trajectory using the proposed tire model is closer to that using the Magic Formula tire model than Dugoff tire model.


2018 ◽  
Vol 46 (3) ◽  
pp. 174-219 ◽  
Author(s):  
Bin Li ◽  
Xiaobo Yang ◽  
James Yang ◽  
Yunqing Zhang ◽  
Zeyu Ma

ABSTRACT The tire model is essential for accurate and efficient vehicle dynamic simulation. In this article, an in-plane flexible ring tire model is proposed, in which the tire is composed of a rigid rim, a number of discretized lumped mass belt points, and numerous massless tread blocks attached on the belt. One set of tire model parameters is identified by approaching the predicted results with ADAMS® FTire virtual test results for one particular cleat test through the particle swarm method using MATLAB®. Based on the identified parameters, the tire model is further validated by comparing the predicted results with FTire for the static load-deflection tests and other cleat tests. Finally, several important aspects regarding the proposed model are discussed.


2019 ◽  
Vol XVI (2) ◽  
pp. 1-11
Author(s):  
Farrukh Jamal ◽  
Hesham Mohammed Reyad ◽  
Soha Othman Ahmed ◽  
Muhammad Akbar Ali Shah ◽  
Emrah Altun

A new three-parameter continuous model called the exponentiated half-logistic Lomax distribution is introduced in this paper. Basic mathematical properties for the proposed model were investigated which include raw and incomplete moments, skewness, kurtosis, generating functions, Rényi entropy, Lorenz, Bonferroni and Zenga curves, probability weighted moment, stress strength model, order statistics, and record statistics. The model parameters were estimated by using the maximum likelihood criterion and the behaviours of these estimates were examined by conducting a simulation study. The applicability of the new model is illustrated by applying it on a real data set.


2019 ◽  
Vol 147 (5) ◽  
pp. 1429-1445 ◽  
Author(s):  
Yuchu Zhao ◽  
Zhengyu Liu ◽  
Fei Zheng ◽  
Yishuai Jin

Abstract We performed parameter estimation in the Zebiak–Cane model for the real-world scenario using the approach of ensemble Kalman filter (EnKF) data assimilation and the observational data of sea surface temperature and wind stress analyses. With real-world data assimilation in the coupled model, our study shows that model parameters converge toward stable values. Furthermore, the new parameters improve the real-world ENSO prediction skill, with the skill improved most by the parameter of the highest climate sensitivity (gam2), which controls the strength of anomalous upwelling advection term in the SST equation. The improved prediction skill is found to be contributed mainly by the improvement in the model dynamics, and second by the improvement in the initial field. Finally, geographic-dependent parameter optimization further improves the prediction skill across all the regions. Our study suggests that parameter optimization using ensemble data assimilation may provide an effective strategy to improve climate models and their real-world climate predictions in the future.


Author(s):  
Abdullah Genc

Abstract In this paper, a new empirical path loss model based on frequency, distance, and volumetric occupancy rate is generated at the 3.5 and 4.2 GHz in the scope of 5G frequency bands. This study aims to determine the effect of the volumetric occupancy rate on path loss depending on the foliage density of the trees in the pine forest area. Using 4.2 GHz and the effect of the volumetric occupancy rate contributes to the literature in terms of novelty. Both the reference measurements to generate a model and verification measurements to verify the proposed models are conducted in three different regions of the forest area with double ridged horn antennas. These regions of the artificial forest area consist of regularly sorted and identical pine trees. Root mean square error (RMSE) and R-squared values are calculated to evaluate the performance of the proposed model. For 3.5 and 4.2 GHz, while the RMSEs are 3.983 and 3.883, the values of R-squared are 0.967 and 0.963, respectively. Additionally, the results are compared with four path loss models which are commonly used in the forest area. The proposed one has the best performance among the other models with values 3.98 and 3.88 dB for 3.5 and 4.2 GHz.


Sign in / Sign up

Export Citation Format

Share Document