Effect of the Microstructure of Porous Composite Electrodes on the Electric Power Density of Solid Oxide Fuel Cells

Author(s):  
Siamak Farhad ◽  
Feridun Hamdullahpur

The electric power density generated in co-flow planar solid oxide fuel cells (SOFCs) with porous composite electrodes is predicted using the cell combined micro- macro-model; and the effect of the microstructural variables of the electrodes on the cell power generation is studied. In the combined micro- macro-model, the electrochemical performance of the porous composite electrodes is determined from the micro-model and the distributions of the temperature in solid structure of the cell and the temperature and species partial pressures of the bulk fuel and air streams are determined from the cell macro-model. As a case study, the effect of the microstructural variables of the porous composite electrodes of the Ni-YSZ/YSZ/LSM-YSZ cell operated at the given voltage, fuel utilization ratio, and excess air, on the average power density of the cell is investigated through computer simulation. The results reveal that there is an optimum value for each microstructural variables of the electrodes at which the cell power density is maximized.

2014 ◽  
Vol 61 (1) ◽  
pp. 177-190
Author(s):  
L. Zhu ◽  
L. Zhang ◽  
F. Zhao ◽  
A. V. Virkar

2020 ◽  
Vol 34 (07n09) ◽  
pp. 2040038
Author(s):  
Yeageun Lee ◽  
Jianhuang Zeng ◽  
Chunhua Zheng ◽  
Wonjong Yu ◽  
Suk Won Cha ◽  
...  

To study the geometrical scale dependency of thin film solid oxide fuel cells (SOFCs), we fabricated three thin films SOFCs which have the same cross-sectional structure but different electrode areas of 1 mm2, 4 mm2 and 9 mm2. Since the activation and ohmic losses of SOFCs depend on their active region, we examined the variations of the power density of the cells with a Pt/YSZ/Pt structure and simulated the power density variations using the COMSOL software package.


Author(s):  
Vittorio Verda ◽  
Gianmichele Orsello ◽  
Gianni Disegna ◽  
Ferrante Debenedictis

Solid Oxide Fuel Cells (SOFCs) are a promising technology for distributed electricity generation and cogeneration. Most of the installations of SOFC are small size fuel cells (of the order of decades of watts or few hundred watts) in laboratories. There are very few installations of commercial scale SOFC plants. In this paper the operating results obtained with two SOFC plants are presented. These plants, whose nominal electric power is 100 kW and 5 kW respectively, produce heat and power to contribute to the energy requirements of the Turbocare factory in Torino, Italy.


2019 ◽  
Vol 44 (59) ◽  
pp. 31475-31487 ◽  
Author(s):  
Cornelia Bischof ◽  
Andreas Nenning ◽  
Andreas Malleier ◽  
Lukas Martetschläger ◽  
Andre Gladbach ◽  
...  

2014 ◽  
Vol 1070-1072 ◽  
pp. 488-491
Author(s):  
Xiu Ling Yu ◽  
Ming Fei Shi

SrFe0.9Al0.1O3-δ(SFA) powder was mixed with a different mass content of SDC 10, 20 and 30 wt.% to form SFA-SDC composite cathodes subsequently investigated as potential IT-SOFC cathodes on LSGM electrolytes. No obvious reaction products between SDC (or LSGM) and SFA occur under test for the cathode of SOFCs. As SOFC cathodes, the area-specific resistances of the SFA-SDC cathodes on the LSGM electrolyte with SDC 10, 20 and 30 wt.% at 800 oC are 0.089, 0.068 and 0.087 Ω cm2, respectively. The peak power density of the SFA-SDC20 on a 300 μm-thick LSGM electrolyte reach 512 mW cm−2 at 800 °C.


2006 ◽  
Vol 4 (1) ◽  
pp. 99-106 ◽  
Author(s):  
Marco Cannarozzo ◽  
Simone Grosso ◽  
Gerry Agnew ◽  
Adriana Del Borghi ◽  
Paola Costamagna

Composite electrodes are of great interest in the field of solid oxide fuel cells because their use can improve the performance of these cells. However, an important correlation exists between composition, microstructure, and thickness of an electrode and its performance. This correlation has been investigated in this work using a theoretical model. The model, in order to consider all the losses occurring in an electrode, includes Ohm’s law for ionic and electronic charge transport, and the Butler-Volmer equation to evaluate the activation polarizations, and mass transport equations, taking into account diffusion through porous media, to evaluate the concentration losses. The model shows that the best electrode performance is a trade-off between activation and concentration losses. This is because a decrease in the dimensions of the particles or an increase in its thickness result, on the one hand, in a reduction of the activation polarizations, because of a larger active area for the electrochemical reaction, and, on the other hand, in an increase in the concentration losses due to a more difficult gas diffusion. In particular, in order to understand the impact of concentration losses on the performance of composite electrodes, the simulations have been run with two models, one including and the other one neglecting the mass transport equations. The results show that concentration losses play a role only with thick electrodes composed of small particles, operating at high fuel utilization.


AIChE Journal ◽  
2011 ◽  
Vol 58 (6) ◽  
pp. 1893-1906 ◽  
Author(s):  
Siamak Farhad ◽  
Feridun Hamdullahpur

2011 ◽  
Vol 1330 ◽  
Author(s):  
Hiroo Yugami ◽  
Kensuke Kubota ◽  
Yu Inagaki ◽  
Fumitada Iguchi ◽  
Shuji Tanaka ◽  
...  

ABSTRACTMicro-solid oxide fuel cells (Micro-SOFCs) with yttrium-doped barium zirconate (BZY) and strontium and cobalt-doped lanthanum scandate (LSScCo) electrolytes were fabricated for low-temperature operation at 300 °C. The micro-SOFC with a BZY electrolyte could operate at 300 °C with an open circuit voltage (OCV) of 1.08 V and a maximum power density of 2.8 mW/cm2. The micro-SOFC with a LSScCo electrolyte could operate at 370 °C; its OCV was about 0.8 V, and its maximum power density was 0.6 mW/cm2. Electrochemical impedance spectroscopy revealed that the electrolyte resistance in both the micro-SOFCs was lower than 0.1 Ωcm2, and almost all of the resistance was due to anode and cathode reactions. Although the obtained maximum power density was not sufficient for practical applications, improvement of electrodes will make these micro-SOFCs promising candidates for power sources of mobile electronic devices.


Sign in / Sign up

Export Citation Format

Share Document