High Pressure Spray Diagnostics Facility for Development and Evaluation of Aero-Engine Atomizer and Swirler Assemblies

Author(s):  
Mark K. Lai ◽  
William G. Freeman ◽  
Paul R. Yankowich ◽  
Joe D. Bryant ◽  
Peter Walterscheid

Recently, Honeywell has developed an unique industry capability of a high-pressure spray diagnostics facility to characterize 3D spray structures. Capability unique to Honeywell is highlighted. Major issues in measurement procedures under laser, industrial, and high-pressure environments and in acquisition and post-processing of 3D imaging are discussed. To characterize 3D spray, methodologies are described to quantitatively analyze vertical and horizontal spray images and to develop correlations of atomizer performances with engine (or rig) test data. Applications of this facility for a dual-orifice atomizer with an air shroud, a piloted airblast atomizer, and an assembly of a Lean-Direct Injection (LDI) atomizer with premixed swirlers are presented. The results indicate that, to have good correlations of atomizer performance with engine (or rig) test data, atomizers must be tested under high-pressure conditions and characterized three-dimensionally. Capabilities are shown to provide critical information for design and development of combustion systems.

2017 ◽  
Vol 121 (1242) ◽  
pp. 1087-1108 ◽  
Author(s):  
J. Li ◽  
X. Sun ◽  
Y. Liu ◽  
V. Sethi

ABSTRACTThe Lean Direct Injection (LDI) combustor is one of the low-emissions combustors with great potential in aero-engine applications, especially those with high overall pressure ratio. A preliminary design tool providing basic combustor sizing information and qualitative assessment of performance and emission characteristics of the LDI combustor within a short period of time will be of great value to designers. In this research, the methodology of preliminary aerodynamic design for a second-generation LDI (LDI-2) combustor was explored. A computer code was developed based on this method covering the design of air distribution, combustor sizing, diffuser, dilution holes and swirlers. The NASA correlations for NOxemissions are also embedded in the program in order to estimate the NOx production of the designed LDI combustor. A case study was carried out through the design of an LDI-2 combustor named as CULDI2015 and the comparison with an existing rich-burn, quick-quench, lean-burn combustor operating at identical conditions. It is discovered that the LDI combustor could potentially achieve a reduction in liner length and NOxemissions by 18% and 67%, respectively. A sensitivity study on parameters such as equivalence ratio, dome and passage velocity and fuel staging is performed to investigate the effect of design uncertainties on both preliminary design results and NOxproduction. A summary on the variation of design parameters and their impact is presented. The developed tool is proved to be valuable to preliminarily evaluate the LDI combustor performance and NOxemission at the early design stage.


Alloy Digest ◽  
2015 ◽  
Vol 64 (1) ◽  

Abstract Sandvik Pressurfect is an austenitic chromium-nickel stainless steel with low carbon content used for high-pressure gasoline direct injection (GDI) fuel system. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and bend strength. It also includes information on corrosion resistance as well as heat treating and machining. Filing Code: SS-1195. Producer or source: Sandvik Steel Company.


2014 ◽  
Author(s):  
Cheng Huang ◽  
Rohan Gejji ◽  
William Anderson ◽  
Changjin Yoon ◽  
Venkateswaran Sankaran

2020 ◽  
Vol 32 (12) ◽  
pp. 125118
Author(s):  
Yazhou Shen ◽  
Mohamad Ghulam ◽  
Kai Zhang ◽  
Ephraim Gutmark ◽  
Christophe Duwig

Author(s):  
Jianing Li ◽  
Umesh Bhayaraju ◽  
San-Mou Jeng

A generic novel injector was designed for multi-Lean Direct Injection (M-LDI) combustors. One of the drawbacks of the conventional pressure swirl and prefilming type airblast atomizers is the difficulty of obtaining a uniform symmetric spray under all operating conditions. Micro-channels are needed inside the injector for uniformly distributing the fuel. The problem of non-uniformity is magnified in smaller sized injectors. The non-uniform liquid sheet causes local fuel rich/lean zones leading to higher NOx emissions. To overcome these problems, a novel fuel injector was designed to improve the fuel delivery to the injector by using a porous stainless steel material with 30 μm porosity. The porous tube also acts as a prefilming surface. Liquid and gaseous fuels can be injected through the injector. In the present study, gaseous fuel was injected to investigate injector fuel-air mixing performance. The gaseous fuel was injected through a porous tube between two radial-radial swirling air streams to facilitate fuel-air mixing. The advantage of this injector is that it increases the contact surface area between the fuel-air at the fuel injection point. The increased contact area enhances fuel-air mixing. Fuel-air mixing and combustion studies were carried out for both gaseous and liquid fuel. Flame visualization, and emissions measurements were carried out inside the exit of the combustor. The measurements were carried out at atmospheric conditions under fuel lean conditions. Natural gas was used as a fuel in these experiments. Fuel-air mixing studies were carried out at different equivalence ratios with and without confinement. The mass fraction distributions were measured at different downstream locations from the injector exit. Flame characterization was carried out by chemiluminescence at different equivalence ratios and inlet air temperatures. Symmetry of the flame, flame length and heat release distribution were analyzed from the flame images. The effects of inlet air temperature and combustion flame temperature on emissions was studied. Emissions were corrected to 15% O2 concentration. NOx emissions increase with inlet air temperature and flame temperature. Effect of flame temperature on NOx concentration is more significant than effect of inlet air temperature. Fuel-air mixing profile was used to obtain mass fraction Probability Density Function (pdf). The pdfs were used for simulations in Chemkin Pro. The measured emissions concentrations at the exit of the injector was compared with simulations. In Chemkin model, a network model with several PSRs (perfectly stirred reactor) were utilized, followed by a mixer and a PFR (plug flow reactor). The comparison between the simulations and the experimental results was investigated.


Author(s):  
Tommaso Bacci ◽  
Tommaso Lenzi ◽  
Alessio Picchi ◽  
Lorenzo Mazzei ◽  
Bruno Facchini

Modern lean burn aero-engine combustors make use of relevant swirl degrees for flame stabilization. Moreover, important temperature distortions are generated, in tangential and radial directions, due to discrete fuel injection and liner cooling flows respectively. At the same time, more efficient devices are employed for liner cooling and a less intense mixing with the mainstream occurs. As a result, aggressive swirl fields, high turbulence intensities, and strong hot streaks are achieved at the turbine inlet. In order to understand combustor-turbine flow field interactions, it is mandatory to collect reliable experimental data at representative flow conditions. While the separated effects of temperature, swirl, and turbulence on the first turbine stage have been widely investigated, reduced experimental data is available when it comes to consider all these factors together.In this perspective, an annular three-sector combustor simulator with fully cooled high pressure vanes has been designed and installed at the THT Lab of University of Florence. The test rig is equipped with three axial swirlers, effusion cooled liners, and six film cooled high pressure vanes passages, for a vortex-to-vane count ratio of 1:2. The relative clocking position between swirlers and vanes has been chosen in order to have the leading edge of the central NGV aligned with the central swirler. In order to generate representative conditions, a heated mainstream passes though the axial swirlers of the combustor simulator, while the effusion cooled liners are fed by air at ambient temperature. The resulting flow field exiting from the combustor simulator and approaching the cooled vane can be considered representative of a modern Lean Burn aero engine combustor with swirl angles above ±50 deg, turbulence intensities up to about 28% and maximum-to-minimum temperature ratio of about 1.25. With the final aim of investigating the hot streaks evolution through the cooled high pressure vane, the mean aerothermal field (temperature, pressure, and velocity fields) has been evaluated by means of a five-hole probe equipped with a thermocouple and traversed upstream and downstream of the NGV cascade.


Author(s):  
F. Carchedi ◽  
G. R. Wood

This paper describes the design and development of a 15-stage axial flow compressor for a −6MW industrial gas turbine. Detailed aspects of the aerodynamic design are presented together with rig test data for the complete characteristic including stage data. Predictions of spanwise flow distributions are compared with measured values for the front stages of the compressor. Variable stagger stator blading is used to control the position of the low speed surge line and the effects of the stagger changes are discussed.


Sign in / Sign up

Export Citation Format

Share Document