The Nature of NOx Formation Within an Industrial Gas Turbine Dry Low Emission Combustor

Author(s):  
Khawar J. Syed ◽  
Eoghan Buchanan

The NOx formation within a practical lean premixed gas turbine combustor concept has been investigated. The effects of chemical kinetics and fuel/air mixing have been isolated, by adopting an approach, which combines high pressure combustion testing, CFD and chemical reactor modelling. Given the complexities of the underlying fluid dynamic and chemical processes and their interactions, consistency has been sought between experimental and numerical approaches, prior to drawing any conclusions. Two variants of Siemens Industrial Turbomachinery’s dry low emissions combustor have been investigated, one exhibiting near-ideally premixed combustion over a wide range of combustor pressure drop. Perfectly Stirred Reactor analysis, utilising the GRI 3.0 NOx mechanism, shows that NOx formation is dominated by the N2O and Zeldovich routes, with the N2O route being the larger at flame temperatures below 1800–1900K, for systems operating at 14bars, 400°C inlet temperature and at residence times of interest. Other reactions involving H-N-O chemistry are also significant, however the C-H-N-O chemistry has a negligible impact.

1978 ◽  
Vol 100 (4) ◽  
pp. 640-646 ◽  
Author(s):  
P. Donovan ◽  
T. Cackette

A set of factors which reduces the variability due to ambient conditions of the hydrocarbon, carbon monoxide, and oxides of nitrogen emission indices has been developed. These factors can be used to correct an emission index to reference day ambient conditions. The correction factors, which vary with engine rated pressure ratio for NOx and idle pressure ratio for HC and CO, can be applied to a wide range of current technology gas turbine engines. The factors are a function of only the combustor inlet temperature and ambient humidity.


Author(s):  
Shan Li ◽  
Shanshan Zhang ◽  
Lingyun Hou ◽  
Zhuyin Ren

Modern gas turbines in power systems employ lean premixed combustion to lower flame temperature and thus achieve low NOx emissions. The fuel/air mixing process and its impacts on emissions are of paramount importance to combustor performance. In this study, the mixing process in a methane-fired model combustor was studied through an integrated experimental and numerical study. The experimental results show that at the dump location, the time-averaged fuel/air unmixedness is less than 10% over a wide range of testing conditions, demonstrating the good mixing performance of the specific premixer on the time-averaged level. A study of the effects of turbulent Schmidt number on the unmixedness prediction shows that for the complex flow field involved, it is challenging for Reynolds-Averaged Navier-Stokes (RANS) simulations with constant turbulent Schmidt number to accurately predict the mixing process throughout the combustor. Further analysis reveals that the production and scalar dissipation are the key physical processes controlling the fuel/air mixing. Finally, the NOx formation in this model combustor was analyzed and modelled through a flamelet-based approach, in which NOx formation is characterized through flame-front NOx and its post-flame formation rate obtained from one-dimensional laminar premixed flames. The effect of fuel/air unmixedness on NOx formation is accounted for through the presumed probability density functions (PDF) of mixture fraction. Results show that the measured NOx in the model combustor are bounded by the model predictions with the fuel/air unmixedness being 3% and 5% of the maximum unmixedness. In the context of RANS, the accuracy in NOx prediction depends on the unmixedness prediction which is sensitive to turbulent Schmidt number.


Author(s):  
Tao Ren ◽  
Michael F. Modest ◽  
Somesh Roy

Radiative heat transfer is studied numerically for reacting swirling flow in an industrial gas turbine burner operating at a pressure of 15 bar. The reacting field characteristics are computed by Reynolds-averaged Navier-Stokes (RANS) equations using the k-ε model with the partially stirred reactor (PaSR) combustion model. The GRI-Mech 2.11 mechanism, which includes nitrogen chemistry, is used to demonstrate the the ability of reducing NOx emissions of the combustion system. A Photon Monte Carlo (PMC) method coupled with a line-by-line spectral model is employed to accurately account for the radiation effects. CO2, H2O and CO are assumed to be the only radiatively participating species and wall radiation is considered as well. Optically thin and PMC-gray models are also employed to show the differences between the simplest radiative calculation models and the most accurate radiative calculation model, i.e., PMC-LBL, for the gas turbine burner. It was found that radiation does not significantly alter the temperature level as well as CO2 and H2O concentrations. However, it has significant impacts on the NOx levels at downstream locations.


Author(s):  
Wookyung Kim ◽  
Jeffrey Cohen

The central objective of this study is to investigate the effectiveness of implementing a plasma discharge to improve combustor dynamics and flame stability. Specifically, a nano-second pulsed plasma discharge (NSPD) was applied to a premixed gaseous fuel/air dump combustor for mitigation of dynamic combustion instabilities with a minimal NOX penalty. This paper addresses the scaling of this technology from ambient pressure and temperature conditions to more realistic gas turbine combustor conditions. A model combustor operating at representative conditions of O (102) m/s flow velocity, ∼ 580 K combustor inlet temperature, and ∼ 5 atm in-combustor pressure was selected to simulate a typical low-power environment of future aero engine gas turbine combustors. Fully premixed methane or propane was utilized as a fuel. Similar to a previous ambient-pressure study, a significant reduction of pressure fluctuation level was observed, by a factor of 2X to 4X over a wide range of velocity at the baseline temperature and pressure. The plasma power required for the reduction increased linearly with increasing velocity. The change of fuel from methane to propane showed that propane requires significantly (2X) higher plasma power to achieve a similar level of noise reduction. It was also observed that the lean blowout (LBO) limit was significantly extended in the presence of the plasma, however, substantial incomplete combustion occurs in the extended regime. NOX measurements showed that the incremental NOX production due to the presence of the plasma was low (∼ < 1EINOX) in general, however, it increased with decreasing velocity and pressure, and increasing temperature.


2015 ◽  
Vol 4 (5) ◽  
pp. 41-48 ◽  
Author(s):  
Кулаков ◽  
D. Kulakov ◽  
Щёголев ◽  
N. Shchegolev ◽  
Тумашев ◽  
...  

Coal mining is accompanied by the release of coal mine methane. Its emissions into the atmosphere within methane-air mixture have a negative impact on the ecological situation. The modern approach involves the use of methane-air-mixture for heat boilers or units to generate electricity. For the generation of heat and electrical energy the coal mine methane could be used in cogeneration gas turbine plants with an altered sequence of processes. Thermo — and gas dynamics studies were conducted in a wide range of parameters of gas turbine plants. For small power plants recommended are: 2.8 compression ratio, turbine inlet — 1173 K, gas cooler inlet temperature — 303 K, 0.8 regeneration ratio. In this case the electrical efficiency of gas turbine plant is 25–26% and even 63–64% if produced heat is counted. Cogeneration gas turbine plant with an altered sequence of process has smaller capital and operating costs compared to traditional gas turbine unit. The use of methane-air mixture as fuel in such gas turbine units increases the profitability of coal mining and improves the ecological situation in the region.


Author(s):  
V. Prakash ◽  
J. Steimes ◽  
D. J. E. M. Roekaerts ◽  
S. A. Klein

The increasing amount of renewable energy and emission norms challenge gas turbine power plants to operate at part-load with high efficiency, while reducing NOx and CO emissions. A novel solution to this dilemma is external Flue Gas Recirculation (FGR), in which flue gases are recirculated to the gas turbine inlet, increasing compressor inlet temperature and enabling higher part load efficiencies. FGR also alters the oxidizer composition, potentially leading to reduced NOx levels. This paper presents a kinetic model using chemical reactor networks in a lean premixed combustor to study the impact of FGR on emissions. The flame zone is split in two perfectly stirred reactors modelling the flame front and the recirculation zone. The flame reactor is determined based on a chemical time scale approach, accounting for different reaction kinetics due to FGR oxidizers. The recirculation zone is determined through empirical correlations. It is followed by a plug flow reactor. This method requires less details of the flow field, has been validated with literature data and is generally applicable for modelling premixed flames. Results show that due to less O2 concentration, NOx formation is inhibited down to 10–40% and CO levels are escalated up to 50%, for identical flame temperatures. Increasing combustor pressure leads to a rise in NOx due to thermal effects beyond 1800 K, and a drop in CO levels, due to the reduced chemical dissociation of CO2. Wet FGR reduces NOx by 5–10% and increases CO by 10–20%.


1996 ◽  
Vol 118 (1) ◽  
pp. 167-172 ◽  
Author(s):  
H. Kumakura ◽  
M. Sasaki ◽  
D. Suzuki ◽  
H. Ichikawa

Performance tests were conducted on a low-emission combustor, which has a pre-vaporization–premixing lean combustion system and is designed for a 100 kW automotive ceramic gas turbine. The results of steady-state combustion tests performed at an inlet temperature of 1000–1200 K and pressure of 0.1–0.34 MPa indicate that the combustor would meet Japan’s emission standards for gasoline engine passenger cars without using an aftertreatment system. Flashback was suppressed by controlling the mixture velocity and air ratios. Strength tests conducted on rings and bars cut from the actual ceramic parts indicate that the combustor has nearly the same level of strength as standard test specimens.


Author(s):  
Masafumi Sasaki ◽  
Hirotaka Kumakura ◽  
Daishi Suzuki ◽  
Katsuhiko Sugiyama ◽  
Youichirou Ohkubo

A low emission combustor for a 100kW ceramic gas turbine, which is intended to meet Japanese emission standards for gasoline passenger cars, has been designed and subjected to initial performance tests. A prevaporization-premixing combustion system was chosen as the most suitable system for the combustor. The detailed combustor design, including the use of ceramic components and fuel injectors, was pursued taking into account the allowable engine dimensions for vehicle installation. In the initial performance tests conducted at a combustor inlet temperature of 773K, a low NOx level was obtained that satisfied the steady state target at this temperature level.


Author(s):  
J. E. Donald Gauthier

This paper describes the results of modelling the performance of several indirectly fired gas turbine (IFGT) power generation system configurations based on four gas turbine class sizes, namely 5 kW, 50 kW, 5 MW and 100 MW. These class sizes were selected to cover a wide range of installations in residential, commercial, industrial and large utility power generation installations. Because the IFGT configurations modelled consist of a gas turbine engine, one or two recuperators and a furnace; for comparison purpose this study also included simulations of simple cycle and recuperated gas turbine engines. Part-load, synchronous-speed simulations were carried out with generic compressor and turbine maps scaled for each engine design point conditions. The turbine inlet temperature (TIT) was varied from the design specification to a practical value for a metallic high-temperature heat exchanger in an IFGT system. As expected, the results showed that the reduced TIT can have dramatic impact on the power output and thermal efficiency when compared to that in conventional gas turbines. However, the simulations also indicated that several configurations can lead to higher performance, even with the reduced TIT. Although the focus of the study is on evaluation of thermodynamic performance, the implications of varying configurations on cost and durability are also discussed.


Author(s):  
Chris Hutchison ◽  
Anthony Chan ◽  
Dan Stankiewicz

Cracking at the trailing edge of a heavy duty industrial gas turbine blade has been observed on a number of serviced parts. The cracking usually occurs within 1.0″ of the platform. The trailing edge (TE) cracks have been found to propagate through the airfoil, leading to airfoil separation and severe engine damage. Liburdi Turbine Services has undertaken an independent metallurgical and stress analysis of the blade to determine the cause of the cracking. This paper covers the stress and low cycle fatigue (LCF) analysis of a platform undercut modification designed to mitigate crack initiation and thus increase part life. A finite element model of the blade was developed. Thermal loading was applied from a conjugate heat and mass transfer analysis between the blade, gas path flow and internal cooling flow. Base load conditions were used at turbine inlet temperature 2482°F. Results showed that the peak stress was present in the TE cooling slot corner, and was large enough to cause local yielding and LCF. The geometry of the modification was shown to strongly influence stress in the TE airfoil region and in the undercut region. Thus a balance was found to provide sufficiently low stresses in both regions and still be practical for machining. The modification was found to decrease stress in the TE cooling slot by a factor of 0.71 relative to that of the current OEM design, and increase life by 1.79 times. A viable modification has been demonstrated to extend blade life by reducing local stress and thus mitigating crack initiation at the airfoil TE.


Sign in / Sign up

Export Citation Format

Share Document