Development of the PGT 25 High Efficiency Gas Turbine: Part 3 — Experimental Program and Testing

Author(s):  
P. Lacitignola ◽  
E. Valentini

This paper presents a review of the engineering testing program related to development of the PGT-25 gas turbine. The experimental methods employed and their capability of providing information for the tuning of the engine and its parts are discussed. Testing has continuously supported turbine design and development; integration of analytical and experimental procedures has proven to be efficient for successful final engine testing. Full load testing, using well developed instrumentation, has made it possible to know actual component behavior and engine performance in steady and transient states, over the entire speed and power range. The reliability of the machine has been assessed through the results of these tests.

Author(s):  
E. Valentini ◽  
P. Lacitignola ◽  
M. Casini

Instrumentation and measurements play a very special role in the advancement of gas turbine turbomachinery. In an industrial gas turbine experimental program, testing constantly flanks machine development and full-load testing of extensively instrumented units provides information on both overall and component performance. Rotordynamic testing is performed to determine, in ambient conditions, the optimum configuration for the rotor-bearing-casing assembly. Fluid-dynamic testing on models of the inlet duct, turbine casing and transition piece assembly and blade cooling system is carried out to minimize flow distortions or optimize cooling flows. Stress and modal analyses on turbine and compressor blades are performed, using 3D photoelasticity and holographic interferometry. In the full-load testing, the measurements include thermodynamic values, temperatures of the components, blade vibratory strains, blade tip clearances and axial displacements. Signals from rotating thermocouples and strain gages, installed on both turbine and compressor rotors, are transmitted using slip ring systems. HP blade temperature distribution is measured by means of the infrared pyrometer. Typical Campbell diagrams are derived from the blade strain gage measurements and are used for HCF verification. Radial and axial stator-to-rotor displacements are measured during transients.


Author(s):  
Peter D. Smout ◽  
Steven C. Cook

The determination of gas turbine engine performance relies heavily on intrusive rakes of pilot tubes and thermocouples for gas path pressure and temperature measurement. For over forty years, Kiel-shrouds mounted on the rake body leading edge have been used as the industry standard to de-sensitise the instrument to variations in flow incidence and velocity. This results in a complex rake design which is expensive to manufacture, susceptible to mechanical damage, and difficult to repair. This paper describes an exercise aimed at radically reducing rake manufacture and repair costs. A novel ’common cavity rake’ (CCR) design is presented where the pressure and/or temperature sensors are housed in a single slot let into the rake leading edge. Aerodynamic calibration data is included to show that the performance of the CCR design under uniform flow conditions and in an imposed total pressure gradient is equivalent to that of a conventional Kiel-shrouded rake.


Author(s):  
E. Benvenuti ◽  
B. Innocenti ◽  
R. Modi

This paper outlines parameter selection criteria and major procedures used in the PGT 25 gas turbine power spool aerodynamic design; significant results of the shop full-load tests are also illustrated with reference to both overall performance and internal flow-field measurements. A major aero-design objective was established as that of achieving the highest overall performance levels possible with the matching to latest generation aero-derivative gas generators; therefore, high efficiencies were set as a target both for the design point and for a wide range of operating conditions, to optimize the turbine’s uses in mechanical drive applications. Furthermore, the design was developed to reach the performance targets in conjunction with the availability of a nominal shaft speed optimized for the direct drive of pipeline booster centrifugal compressors. The results of the full-load performance testing of the first unit, equipped with a General Electric LM 2500/30 gas generator, showed full attainment of the design objectives; a maximum overall thermal efficiency exceeding 37% at nominal rating and a wide operating flexibility with regard to both efficiency and power were demonstrated.


Author(s):  
V. Pachidis ◽  
P. Pilidis ◽  
I. Li

The performance analysis of modern gas turbine engine systems has led industry to the development of sophisticated gas turbine performance simulation tools and the utilization of skilled operators who must possess the ability to balance environmental, performance and economic requirements. Academic institutions, in their training of potential gas turbine performance engineers have to be able to meet these new challenges, at least at a postgraduate level. This paper describes in detail the “Gas Turbine Performance Simulation” module of the “Thermal Power” MSc course at Cranfield University in the UK, and particularly its practical content. This covers a laboratory test of a small Auxiliary Power Unit (APU) gas turbine engine, the simulation of the ‘clean’ engine performance using a sophisticated gas turbine performance simulation tool, as well as the simulation of the degraded performance of the engine. Through this exercise students are expected to gain a basic understanding of compressor and turbine operation, gain experience in gas turbine engine testing and test data collection and assessment, develop a clear, analytical approach to gas turbine performance simulation issues, improve their technical communication skills and finally gain experience in writing a proper technical report.


Author(s):  
Y. G. Li ◽  
P. Pilidis ◽  
M. A. Newby

Accurate simulation and understanding of gas turbine performance is very useful for gas turbine users. Such a simulation and performance analysis must start from a design point. When some of the engine component parameters for an existing engine are not available, they must be estimated in order that the performance analysis can be carried out. However, the initially simulated design point performance of the engine using estimated engine component parameters may give a result that is different from the actual measured performance. This difference may be reduced with better estimation of these unknown component parameters. However, this can become a difficult task for performance engineers, let alone those without enough engine performance knowledge and experience, when the number of design point component parameters and the number of measurable/target performance parameters become large. In this paper, a gas turbine design point performance adaptation approach has been developed to best estimate the unknown design point component parameters and match the available design point engine measurable/target performance. In the approach, the initially unknown component parameters may be compressor pressure ratios and efficiencies, turbine entry temperature, turbine efficiencies, air mass flow rate, cooling flows, by-pass ratio, etc. The engine target (measurable) performance parameters may be thrust and SFC for aero engines, shaft power and thermal efficiency for industrial engines, gas path pressures and temperatures, etc. To select initially the design point component parameters, a bar chart has been used to analyze the sensitivity of the engine target performance parameters to the design point component parameters. The developed adaptation approach has been applied to a design point performance matching problem of an industrial gas turbine engine GE LM2500+ operating in Manx Electricity Authority (MEA), UK. The application shows that the adaptation approach is very effective and fast to produce a set of design point component parameters of a model engine that matches the actual engine performance very well. Theoretically the developed techniques can be applied to other gas turbine engines.


1999 ◽  
Vol 121 (05) ◽  
pp. 72-74
Author(s):  
Jay M. Wilson ◽  
Henry Baumgartner

The new Cooper-Bessemer power turbine is a high-efficiency, center frame-mounted, three-stage unit that can be driven by either the existing RB211-24 gas generator or the new improved version. The upgraded gas generator combined with the new power turbine offers an increase in nominal output from 28.4 MW (38,000 hp) to 31.8 MW (42,600 hp). The new coupled turbine, now being tested, is called the Coberra 6761. Besides improving core engine performance, the program's objectives included improved fuel efficiency and reliability, and easier site serviceability; extension of the modular concept from the gas generator into the power turbine with improvements in sealing, materials, and temperature capability as well as interchangeability of both upgraded turbines with existing hardware. The Rolls-Royce industrial RB211 turbine, derived from an aircraft engine, is the basis for the gas generator end of Cooper Energy Services' Coberra coupled turbines. The power turbine design capacity has a significant effect on the power at a given speed. The flow capacity was optimized to achieve the best thermal efficiency and lower IP speeds to optimize IP compressor efficiency and permit future throttle push.


2019 ◽  
pp. 39-44
Author(s):  
Stanislav Fábry ◽  
Miroslav Spodniak ◽  
Peter Gašparovič ◽  
Peter Koščák

The paper deals with testing of aircraft gas turbine engines. The main goal of the research is to propose and design testing sequence for a new or rebuilt engine. All factors and circumstances are described, including surroundings of the engine under test. Prerequisite knowledge is introduced, including the theory of testing, description of test beds, the methods of measurement of engine parameters and special factors that affect engine performance. Some examples of real testing facilities are mentioned. The result of the work is a proposal of test cycle, that can be modified according to engine purpose and specification.


Author(s):  
M. W. Horner ◽  
P. E. Sabla ◽  
S. G. Kimura

The direct use of coal as a gas turbine fuel offers the opportunity to burn coal in an environmentally sound manner at a competitive cost of energy. A development program is underway to verify the feasibility of using coal water mixture to fuel an aero-derivative gas turbine. This paper presents the overall program approach, required gas turbine design modifications, and reports the results from small-scale combustor test facilities. The GE LM500 gas turbine was selected for this program because of its high efficiency and size, which is appropriate for transportation and cogeneration markets. The LM500 gas turbine power system design will be modified to accommodate coal fuel and any required emissions control devices. The design for the modified annular combustor is complete and preparations for coal fired tests of a 140 degree annular sector combustor are in progress. The combustor design and test development are being supported by a component test program with a One Nozzle Segment Combustor and a single can combustor LM500 Turbine Simulator. These test facilities are providing results on coal water mixture handling and fuel nozzle design, air staging requirements, component metal temperatures, combustor temperature performance, ash deposition rates, and emissions abatement for NOx, SOx, and particulates.


Author(s):  
Ioanna Aslanidou ◽  
Valentina Zaccaria ◽  
Evangelia Pontika ◽  
Nathan Zimmerman ◽  
Anestis I. Kalfas ◽  
...  

This paper addresses the teaching of gas turbine technology in a third-year undergraduate course in Sweden and the challenges encountered. The improvements noted in the reaction of the students and the achievement of the learning outcomes is discussed. The course, aimed at students with a broad academic education on energy, is focused on gas turbines, covering topics from cycle studies and performance calculations to detailed design of turbomachinery components. It also includes economic aspects during the operation of heat and power generation systems and addresses combined cycles as well as hybrid energy systems with fuel cells. The course structure comprises lectures from academics and industrial experts, study visits, and a comprehensive assignment. With the inclusion of all of these aspects in the course, the students find it rewarding despite the significant challenges encountered. An important contribution to the education of the students is giving them the chance, stimulation, and support to complete an assignment on gas turbine design. Particular attention is given on striking a balance between helping them find the solution to the design problem and encouraging them to think on their own. Feedback received from the students highlighted some of the challenges and has given directions for improvements in the structure of the course, particularly with regards to the course assignment. This year, an application developed for a mobile phone in the Aristotle University of Thessaloniki for the calculation of engine performance will be introduced in the course. The app will have a supporting role during discussions and presentations in the classroom and help the students better understand gas turbine operation. This is also expected to reduce the workload of the students for the assignment and spike their interest.


Author(s):  
Selvam Veerappan ◽  
Abdullatif Chehab ◽  
Phillip Gravett ◽  
Robert Bland ◽  
Christof Lechner

This paper describes the successful full load shop testing of the W501FD 190 MW-class 60 Hz gas turbine engine at the Berlin Test Facility in Germany. A three phase test program aimed at verifying and optimizing new design concepts for improving fleet reliability, performance and operational flexibility is presented. The Berlin test facility set-up, capabilities for continuous full load testing and extensive test instrumentation used to monitor critical engine parameters are described. Some of the verification testing includes speed variation with load, performance and emissions testing to cover a wide range of operating conditions. Engine operation includes inlet guide vane changes, alternate loading rates, shutdown, spin cooling and restarts to verify transient clearance effects and their effects on performance. Vital instrumentation includes compressor and turbine tip clearances, fluid and metal temperature measurements for rotating and stationary components at key locations.


Sign in / Sign up

Export Citation Format

Share Document